Department of Software, College of Information Technology, University of Babylon, Hillah, Babil, Iraq.
University of Warith Al-Anbiyaa, Karbala, Iraq.
Curr Comput Aided Drug Des. 2024;20(5):666-672. doi: 10.2174/0115734099265663230926064638.
Drug-drug interactions (DDIs) can lead to adverse events and compromised treatment efficacy that emphasize the need for accurate prediction and understanding of these interactions.
In this paper, we propose a novel approach for DDI prediction using two separate message-passing neural network (MPNN) models, each focused on one drug in a pair. By capturing the unique characteristics of each drug and their interactions, the proposed method aims to improve the accuracy of DDI prediction. The outputs of the individual MPNN models combine to integrate the information from both drugs and their molecular features. Evaluating the proposed method on a comprehensive dataset, we demonstrate its superior performance with an accuracy of 0.90, an area under the curve (AUC) of 0.99, and an F1-score of 0.80. These results highlight the effectiveness of the proposed approach in accurately identifying potential drugdrug interactions.
The use of two separate MPNN models offers a flexible framework for capturing drug characteristics and interactions, contributing to our understanding of DDIs. The findings of this study have significant implications for patient safety and personalized medicine, with the potential to optimize treatment outcomes by preventing adverse events.
Further research and validation on larger datasets and real-world scenarios are necessary to explore the generalizability and practicality of this approach.
药物-药物相互作用(DDI)可能导致不良事件和治疗效果受损,这强调了准确预测和理解这些相互作用的必要性。
在本文中,我们提出了一种使用两个独立消息传递神经网络(MPNN)模型的新方法来预测药物-药物相互作用,每个模型都专注于一对中的一种药物。通过捕捉每种药物及其相互作用的独特特征,所提出的方法旨在提高药物-药物相互作用预测的准确性。个体 MPNN 模型的输出相结合,整合来自两种药物及其分子特征的信息。我们在一个综合数据集上评估了所提出的方法,证明了其优越的性能,准确性为 0.90,曲线下面积(AUC)为 0.99,F1 得分为 0.80。这些结果突出了该方法在准确识别潜在药物-药物相互作用方面的有效性。
使用两个独立的 MPNN 模型为捕捉药物特征和相互作用提供了一个灵活的框架,有助于我们理解药物-药物相互作用。这项研究的结果对患者安全和个性化医疗具有重要意义,通过预防不良事件,有可能优化治疗效果。
需要在更大的数据集和真实场景中进行进一步的研究和验证,以探索这种方法的普遍性和实用性。