基于有向消息传播的多尺度变分图自动编码器识别微生物-疾病签名关联。

Identification of microbe-disease signed associations via multi-scale variational graph autoencoder based on signed message propagation.

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, China.

出版信息

BMC Biol. 2024 Aug 15;22(1):172. doi: 10.1186/s12915-024-01968-0.

Abstract

BACKGROUND

Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine.

RESULTS

Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes.

CONCLUSIONS

MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.

摘要

背景

大量的临床和生物医学研究已经明确强调了人类微生物组与人类健康的巨大意义。识别与疾病相关的微生物对于早期疾病诊断和推进精准医学至关重要。

结果

鉴于在精细疾病状态下微生物数量变化的信息有助于增强对整体数据分布的全面理解,本研究提出了 MSignVGAE,这是一种使用有向消息传播来预测微生物-疾病关联的框架。MSignVGAE 使用图变分自动编码器来对噪声有向关联数据进行建模,并扩展了多尺度概念以增强表示能力。一种在有向网络中传播有向消息的新策略解决了由有向边连接的节点之间的异质性和一致性问题。此外,我们利用去噪自动编码器的思想来处理相似特征信息中的噪声,这有助于克服融合相似数据中的偏差。MSignVGAE 使用相似性信息作为节点特征,将微生物-疾病关联表示为异构图。多类分类器 XGBoost 用于预测疾病和微生物之间的关联。

结论

MSignVGAE 分别实现了 0.9742 和 0.9601 的 AUROC 和 AUPR 值。对三种疾病的案例研究表明,MSignVGAE 可以通过利用有向信息有效地捕捉到关联的全面分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d04/11328394/0f420fdde137/12915_2024_1968_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索