Iantsen Andrei
Moscow, Russia.
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:230-240. doi: 10.1007/978-3-031-83274-1_18. Epub 2025 Mar 3.
Tumor volume segmentation on MRI is a challenging and time-consuming process that is performed manually in typical clinical settings. This work presents an approach to automated delineation of head and neck tumors on MRI scans, developed in the context of the MICCAI Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge. Rather than designing a new, task-specific convolutional neural network, the focus of this research was to propose improvements to the configuration commonly used in medical segmentation tasks, relying solely on the traditional U-Net architecture. The empirical results presented in this article suggest the superiority of patch-wise normalization used for both training and sliding window inference. They also indicate that the performance of segmentation models can be enhanced by applying a scheduled data augmentation policy during training. Finally, it is shown that a small improvement in quality can be achieved by using Gaussian weighting to combine predictions for individual patches during sliding window inference. The model with the best configuration obtained an aggregated Dice Similarity Coefficient of 0.749 in Task 1 and 0.710 in Task 2 on five cross-validation folds. The ensemble of five models (one best model per validation fold) showed consistent results on a private test set of 50 patients with an of 0.752 in Task 1 and 0.718 in Task 2 (team name: andrei.iantsen). The source code and model weights are freely available at www.github.com/iantsen/hntsmrg.
在MRI上进行肿瘤体积分割是一个具有挑战性且耗时的过程,在典型的临床环境中是手动完成的。这项工作提出了一种在MRI扫描上自动勾勒头颈部肿瘤的方法,该方法是在2024年医学图像计算与计算机辅助干预国际会议(MICCAI)头颈部肿瘤MR引导应用分割(HNTS-MRG)挑战赛的背景下开发的。本研究的重点不是设计一个新的、特定任务的卷积神经网络,而是仅依靠传统的U-Net架构,对医学分割任务中常用的配置提出改进。本文给出的实证结果表明了用于训练和滑动窗口推理的逐块归一化的优越性。结果还表明,在训练期间应用预定的数据增强策略可以提高分割模型的性能。最后,结果表明,在滑动窗口推理期间使用高斯加权来组合各个块的预测,可以在质量上实现小幅提升。在五个交叉验证折上,具有最佳配置的模型在任务1中的聚合骰子相似系数为0.749,在任务2中为0.710。五个模型的集成(每个验证折一个最佳模型)在50名患者的私有测试集上显示出一致的结果,任务1中的值为0.752,任务2中的值为0.718(团队名称:andrei.iantsen)。源代码和模型权重可在www.github.com/iantsen/hntsmrg上免费获取。