Pang Yuxuan, Wang Chunxuan, Zhang Yao-Zhong, Wang Zhuo, Imoto Seiya, Lee Tzong-Yi
Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 2001 Longxiang Road, Longgang, Shenzhen, 518172, China.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf174.
Encoding spatially resolved transcriptomics (SRT) data serves to identify the biological semantics of RNA expression within the tissue while preserving spatial characteristics. Depending on the analytical scenario, one may focus on different contextual structures of tissues. For instance, anatomical regions reveal consistent patterns by focusing on spatial homogeneity, while elucidating complex tumor micro-environments requires more expression heterogeneity. However, current spatial encoding methods lack consideration of the tissue context. Meanwhile, most developed SRT technologies are still limited in providing exact patterns of intact tissues due to limitations such as low resolution or missed measurements. Here, we propose STForte, a novel pairwise graph autoencoder-based approach with cross-reconstruction and adversarial distribution matching, to model the spatial homogeneity and expression heterogeneity of SRT data. STForte extracts interpretable latent encodings, enabling downstream analysis by accurately portraying various tissue contexts. Moreover, STForte allows spatial imputation using only spatial consistency to restore the biological patterns of unobserved locations or low-quality cells, thereby providing fine-grained views to enhance the SRT analysis. Extensive evaluations of datasets under different scenarios and SRT platforms demonstrate that STForte is a scalable and versatile tool for providing enhanced insights into spatial data analysis.
对空间分辨转录组学(SRT)数据进行编码有助于在保留空间特征的同时识别组织内RNA表达的生物学语义。根据分析场景的不同,人们可能会关注组织的不同上下文结构。例如,解剖区域通过关注空间同质性揭示一致的模式,而阐明复杂的肿瘤微环境则需要更多的表达异质性。然而,当前的空间编码方法缺乏对组织上下文的考虑。与此同时,由于诸如低分辨率或测量缺失等限制,大多数已开发的SRT技术在提供完整组织的确切模式方面仍然有限。在此,我们提出了STForte,一种基于新颖的成对图自动编码器的方法,具有交叉重建和对抗分布匹配,用于对SRT数据的空间同质性和表达异质性进行建模。STForte提取可解释的潜在编码,通过准确描绘各种组织上下文实现下游分析。此外,STForte允许仅使用空间一致性进行空间插补,以恢复未观察到的位置或低质量细胞的生物学模式,从而提供细粒度视图以增强SRT分析。在不同场景和SRT平台下对数据集进行的广泛评估表明,STForte是一种可扩展且通用的工具,可用于增强对空间数据分析的洞察。