Suppr超能文献

正视化的动物模型:使眼轴长度与焦平面匹配。

Animal models of emmetropization: matching axial length to the focal plane.

作者信息

Norton T T, Siegwart J T

机构信息

School of Optometry, University of Alabama at Birmingham 35294-4390, USA.

出版信息

J Am Optom Assoc. 1995 Jul;66(7):405-14.

PMID:7560727
Abstract

BACKGROUND

It has long been recognized that more people are emmetropic than would be expected from a random combination of the refractive and axial components of the eye. However, it has been difficult to determine whether this is the result of an active emmetropization mechanism.

METHODS

This paper reviews some of the studies in animals that have been conducted during the past 20 years. Four basic paradigms have been used to determine whether the visual environment helps guide eyes to emmetropia: 1) observing the normal pattern of ocular development, 2) shifting the location of the focal plane with minus- (and plus-) power lenses, 3) removing focused images by visual form deprivation and, 4) restoring form vision after a period of visual deprivation.

RESULTS

Data from many studies suggest that an active emmetropization mechanism guides the postnatal development of the eye, matching the axial length to the focal plane. In normal development, the axial length initially is generally short so that the photoreceptors are in front of the focal plane of the unaccommodated eye. The subsequent axial elongation eventually moves the photoreceptors to, but not past, the focal plane. When animals are raised with the focal plane shifted posteriorly with minus-power lenses, the eyes elongate to approximately match the displaced focal plane. When information about the location of the focal plane is removed by visual deprivation, the eyes elongate past the point of emmetropia and become myopic. When developing eyes that have become myopic from a brief period of form deprivation are re-exposed to patterned images, they can slow their axial elongation, gradually eliminating the myopia. Data from several species suggest that the axial length is regulated within the eye itself, involving direct, spatially local communication from the retina to the sclera. It also appears that the regulation of axial elongation involves active control of the scleral extracellular matrix.

CONCLUSIONS

If humans have a similar mechanism, then successful emmetropization in children may involve two components. One is to inherit a fully functional emmetropization mechanism. Equally important is exposure to a "normal" visual environment. Deficiencies in either, or an interaction between a compromised mechanism and a non-optimal visual environment might also prevent emmetropization.

摘要

背景

长期以来人们认识到,正视眼的人数比根据眼睛屈光和眼轴成分的随机组合所预期的要多。然而,很难确定这是否是一种主动正视化机制的结果。

方法

本文回顾了过去20年中在动物身上进行的一些研究。已使用四种基本范式来确定视觉环境是否有助于引导眼睛达到正视:1)观察眼睛发育的正常模式,2)用负(和正)屈光度镜片改变焦平面的位置,3)通过视觉剥夺去除清晰图像,以及4)在一段时间的视觉剥夺后恢复形觉。

结果

许多研究的数据表明,一种主动正视化机制引导眼睛的出生后发育,使眼轴长度与焦平面相匹配。在正常发育过程中,眼轴长度最初通常较短,因此光感受器位于未调节眼睛的焦平面之前。随后的眼轴伸长最终将光感受器移动到焦平面,但不会超过焦平面。当动物在负屈光度镜片使焦平面后移的情况下饲养时,眼睛伸长以大致匹配移位后的焦平面。当通过视觉剥夺去除有关焦平面位置的信息时,眼睛伸长超过正视点并变成近视。当因短暂的形觉剥夺而近视的发育中的眼睛重新暴露于有图案的图像时,它们可以减缓眼轴伸长,逐渐消除近视。来自几个物种的数据表明,眼轴长度在眼睛自身内部受到调节,涉及从视网膜到巩膜的直接、空间局部的通信。似乎眼轴伸长的调节还涉及巩膜细胞外基质的主动控制。

结论

如果人类有类似的机制,那么儿童成功的正视化可能涉及两个因素。一个是继承一个功能完全正常的正视化机制。同样重要的是暴露于“正常”的视觉环境。两者中的任何一个不足,或者受损机制与非最佳视觉环境之间的相互作用也可能阻止正视化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验