Makeig S, Jung T P, Bell A J, Ghahremani D, Sejnowski T J
Naval Health Research Center, P.O. Box 85122, San Diego, CA 92186-5122, USA.
Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10979-84. doi: 10.1073/pnas.94.20.10979.
Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected-and undetected-target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.
从人类头皮记录的平均事件相关电位(ERP)数据揭示了与实验事件可靠地锁时和锁相的脑电图(EEG)活动。我们在此报告一种基于信息理论的方法的应用,该方法将在多个头皮传感器记录的一个或多个ERP分解为具有固定头皮分布和稀疏激活、最大独立时间进程的成分之和。独立成分分析(ICA)将ERP数据分解为与传感器数量相等的多个成分。导出的成分具有不同但不一定正交的头皮投影。与偶极子拟合方法不同,该算法不模拟其发生器在头部的位置。与去除二阶相关性的方法(如主成分分析(PCA))不同,ICA还最小化了高阶依赖性。应用于听觉警觉实验中检测到和未检测到的目标ERP,该算法导出了十个成分,这些成分将每个主要反应峰值分解为一个或多个具有相对简单头皮分布的ICA成分。其中三个成分仅在受试者检测到目标时活跃,另外三个成分仅在目标未被检测到时活跃,还有一个在两种情况下都活跃。另外三个成分解释了对39赫兹背景点击序列的稳态脑反应。分解的主要特征在不同会话以及传感器数量和放置的变化中都很稳健。这种ERP分析方法可用于比较来自多种刺激、任务条件和受试者状态的反应。