Suppr超能文献

A类β-内酰胺酶的催化特性:效率与多样性。

Catalytic properties of class A beta-lactamases: efficiency and diversity.

作者信息

Matagne A, Lamotte-Brasseur J, Frère J M

机构信息

Centre for Protein Engineering and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium.

出版信息

Biochem J. 1998 Mar 1;330 ( Pt 2)(Pt 2):581-98. doi: 10.1042/bj3300581.

Abstract

beta-Lactamases are the main cause of bacterial resistance to penicillins, cephalosporins and related beta-lactam compounds. These enzymes inactivate the antibiotics by hydrolysing the amide bond of the beta-lactam ring. Class A beta-lactamases are the most widespread enzymes and are responsible for numerous failures in the treatment of infectious diseases. The introduction of new beta-lactam compounds, which are meant to be 'beta-lactamase-stable' or beta-lactamase inhibitors, is thus continuously challenged either by point mutations in the ubiquitous TEM and SHV plasmid-borne beta-lactamase genes or by the acquisition of new genes coding for beta-lactamases with different catalytic properties. On the basis of the X-ray crystallography structures of several class A beta-lactamases, including that of the clinically relevant TEM-1 enzyme, it has become possible to analyse how particular structural changes in the enzyme structures might modify their catalytic properties. However, despite the many available kinetic, structural and mutagenesis data, the factors explaining the diversity of the specificity profiles of class A beta-lactamases and their amazing catalytic efficiency have not been thoroughly elucidated. The detailed understanding of these phenomena constitutes the cornerstone for the design of future generations of antibiotics.

摘要

β-内酰胺酶是细菌对青霉素、头孢菌素及相关β-内酰胺类化合物产生耐药性的主要原因。这些酶通过水解β-内酰胺环的酰胺键使抗生素失活。A类β-内酰胺酶是分布最广泛的酶,也是导致传染病治疗失败的常见原因。因此,旨在“对β-内酰胺酶稳定”的新型β-内酰胺类化合物或β-内酰胺酶抑制剂,不断受到无处不在的TEM和SHV质粒介导的β-内酰胺酶基因突变,或获得编码具有不同催化特性的β-内酰胺酶新基因的挑战。基于包括临床相关的TEM-1酶在内的几种A类β-内酰胺酶的X射线晶体学结构,已经能够分析酶结构中的特定结构变化如何改变其催化特性。然而,尽管有许多可用的动力学、结构和诱变数据,但解释A类β-内酰胺酶特异性谱多样性及其惊人催化效率的因素尚未得到充分阐明。对这些现象的详细理解是设计下一代抗生素的基石。

相似文献

1
Catalytic properties of class A beta-lactamases: efficiency and diversity.
Biochem J. 1998 Mar 1;330 ( Pt 2)(Pt 2):581-98. doi: 10.1042/bj3300581.
2
Beta-lactamases and bacterial resistance to antibiotics.
Mol Microbiol. 1995 May;16(3):385-95. doi: 10.1111/j.1365-2958.1995.tb02404.x.
6
Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase.
J Med Chem. 1998 Nov 5;41(23):4577-86. doi: 10.1021/jm980343w.
7
The evolution of beta-lactamases.
Ciba Found Symp. 1997;207:152-63; discussion 163-6.
8
Modified Penicillin Molecule with Carbapenem-Like Stereochemistry Specifically Inhibits Class C β-Lactamases.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01288-17. Print 2017 Dec.
10
SHV-type beta-lactamases.
Curr Pharm Des. 1999 Nov;5(11):847-64.

引用本文的文献

1
A simple, low-cost, and highly efficient protocol for rapid isolation of pathogenic bacteria from human blood.
Front Microbiol. 2025 Aug 13;16:1637776. doi: 10.3389/fmicb.2025.1637776. eCollection 2025.
2
Unique Regulation of Sed-1 β-Lactamase in : Insights on Resistance to Third-Generation Cephalosporin.
Antibiotics (Basel). 2025 Aug 12;14(8):823. doi: 10.3390/antibiotics14080823.
3
Functionally important residues from graph analysis of coevolved dynamic couplings.
Elife. 2025 Mar 28;14:RP105005. doi: 10.7554/eLife.105005.
5
Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices.
Angew Chem Weinheim Bergstr Ger. 2021 Sep 6;133(37):20346-20351. doi: 10.1002/ange.202104044. Epub 2021 Aug 6.
6
Fluorescently Modified NDM-1: A Versatile Drug Sensor for Rapid β-Lactam Antibiotic and Inhibitor Screening.
ACS Omega. 2024 Feb 13;9(8):9161-9169. doi: 10.1021/acsomega.3c08117. eCollection 2024 Feb 27.
8
Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope.
Adv Microb Physiol. 2023;83:221-307. doi: 10.1016/bs.ampbs.2023.05.003. Epub 2023 Jun 27.
10
Characterization of Two Novel AmpC Beta-Lactamases from the Emerging Opportunistic Pathogen, .
Antibiotics (Basel). 2023 Jan 20;12(2):219. doi: 10.3390/antibiotics12020219.

本文引用的文献

1
TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant.
Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):682-94. doi: 10.1107/S0907444994014496.
2
Construction and characterization of an OHIO-1 beta-lactamase bearing Met69Ile and Gly238Ser mutations.
Antimicrob Agents Chemother. 1997 Sep;41(9):1940-3. doi: 10.1128/AAC.41.9.1940.
4
6
Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis H37Ra.
Antimicrob Agents Chemother. 1997 May;41(5):1182-5. doi: 10.1128/AAC.41.5.1182.
8
Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant.
Antimicrob Agents Chemother. 1997 Apr;41(4):838-40. doi: 10.1128/AAC.41.4.838.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验