Suppr超能文献

真核生物起源与进化的一个新方面。

A new aspect to the origin and evolution of eukaryotes.

作者信息

Vellai T, Takács K, Vida G

机构信息

Department of Genetics, Eötvös Loránd University, Múzeum krt. 4/A., Budapest, H-1088, Hungary.

出版信息

J Mol Evol. 1998 May;46(5):499-507. doi: 10.1007/pl00006331.

Abstract

One of the most important omissions in recent evolutionary theory concerns how eukaryotes could emerge and evolve. According to the currently accepted views, the first eukaryotic cell possessed a nucleus, an endomembrane system, and a cytoskeleton but had an inefficient prokaryotic-like metabolism. In contrast, one of the most ancient eukaryotes, the metamonada Giardia lamblia, was found to have formerly possessed mitochondria. In sharp contrast with the traditional views, this paper suggests, based on the energetic aspect of genome organization, that the emergence of eukaryotes was promoted by the establishment of an efficient energy-converting organelle, such as the mitochondrion. Mitochondria were acquired by the endosymbiosis of ancient alpha-purple photosynthetic Gram-negative eubacteria that reorganized the prokaryotic metabolism of the archaebacterial-like ancestral host cells. The presence of an ATP pool in the cytoplasm provided by this cell organelle allowed a major increase in genome size. This evolutionary change, the remarkable increase both in genome size and complexity, explains the origin of the eukaryotic cell itself. The loss of cell wall and the appearance of multicellularity can also be explained by the acquisition of mitochondria. All bacteria use chemiosmotic mechanisms to harness energy; therefore the periplasm bounded by the cell wall is an essential part of prokaryotic cells. Following the establishment of mitochondria, the original plasma membrane-bound metabolism of prokaryotes, as well as the funcion of the periplasm providing a compartment for the formation of different ion gradients, has been transferred into the inner mitochondrial membrane and intermembrane space. After the loss of the essential function of periplasm, the bacterial cell wall could also be lost, which enabled the naked cells to establish direct connections among themselves. The relatively late emergence of mitochondria may be the reason why multicellularity evolved so slowly.

摘要

近期进化理论中最重要的疏漏之一,涉及真核生物如何出现和演化。根据目前被广泛接受的观点,第一个真核细胞拥有细胞核、内膜系统和细胞骨架,但具有类似原核生物的低效代谢。相比之下,人们发现最古老的真核生物之一、双滴虫贾第虫曾经拥有线粒体。与传统观点形成鲜明对比的是,本文基于基因组组织的能量方面提出,真核生物的出现是由高效能量转换细胞器(如线粒体)的建立所推动的。线粒体是通过古老的α - 紫色光合革兰氏阴性真细菌的内共生获得的,这些细菌重组了类古细菌祖先宿主细胞的原核代谢。这种细胞器在细胞质中提供的ATP池使得基因组大小大幅增加。这一进化变化,即基因组大小和复杂性的显著增加,解释了真核细胞本身的起源。细胞壁的丧失和多细胞性的出现也可以通过线粒体的获得来解释。所有细菌都利用化学渗透机制来获取能量;因此,由细胞壁界定的周质是原核细胞的重要组成部分。线粒体建立之后,原核生物原本与质膜结合的代谢以及为形成不同离子梯度提供隔室的周质功能,已转移到线粒体内膜和膜间隙。周质的基本功能丧失后,细菌细胞壁也可能丧失,这使得裸露的细胞能够相互建立直接连接。线粒体出现相对较晚可能是多细胞性演化如此缓慢的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验