Suppr超能文献

粘弹性凝胶圆柱体中瞬态剪切波传播的磁共振测量

Magnetic Resonance Measurement of Transient Shear Wave Propagation in a Viscoelastic Gel Cylinder.

作者信息

Bayly P V, Massouros P G, Christoforou E, Sabet A, Genin G M

机构信息

Department of Mechanical and Aerospace Engineering, Washington University, St. Louis, Missouri, 63130.

出版信息

J Mech Phys Solids. 2008 May;56(5):2036-2049. doi: 10.1016/j.jmps.2007.10.012.

Abstract

A magnetic resonance measurement technique was developed to characterize the transient mechanical response of a gel cylinder subjected to angular acceleration. The technique employs tagged magnetic resonance imaging (MRI) synchronized to periodic impact excitation of a bulk specimen. The tagged MRI sequence provides, non-invasively, an array of distributed displacement and strain measurements with high spatial (here, 5 mm) and temporal (6 ms) resolution. The technique was validated on a cylindrical gelatin sample. Measured dynamic strain fields were compared to strain fields predicted using (1) a closed-form solution and (2) finite element simulation of shear waves in a three-parameter "standard" linear viscoelastic cylinder subjected to similar initial and boundary conditions. Material parameters used in the analyses were estimated from measurements made on the gelatin in a standard rheometer. The experimental results support the utility of tagged MRI for dynamic, non-invasive assays such as measurement of shear waves in brain tissue during angular acceleration of the skull. When applied in the inverse sense, the technique has potential for characterization of the mechanical behavior of gel biomaterials.

摘要

开发了一种磁共振测量技术,以表征凝胶圆柱体在角加速度作用下的瞬态力学响应。该技术采用标记磁共振成像(MRI),并与大块样本的周期性冲击激励同步。标记MRI序列以高空间分辨率(此处为5毫米)和时间分辨率(6毫秒)非侵入性地提供一系列分布式位移和应变测量值。该技术在圆柱形明胶样品上得到了验证。将测量的动态应变场与使用以下两种方法预测的应变场进行了比较:(1)封闭形式解;(2)在类似初始和边界条件下,对三参数“标准”线性粘弹性圆柱体中的剪切波进行有限元模拟。分析中使用的材料参数是根据在标准流变仪上对明胶进行的测量估算得出的。实验结果支持标记MRI在动态、非侵入性检测中的实用性,例如在颅骨角加速度期间测量脑组织中的剪切波。当以相反的方式应用时,该技术具有表征凝胶生物材料力学行为的潜力。

相似文献

1
Magnetic Resonance Measurement of Transient Shear Wave Propagation in a Viscoelastic Gel Cylinder.
J Mech Phys Solids. 2008 May;56(5):2036-2049. doi: 10.1016/j.jmps.2007.10.012.
3
Deformation of the human brain induced by mild angular head acceleration.
J Biomech. 2008;41(2):307-15. doi: 10.1016/j.jbiomech.2007.09.016. Epub 2007 Oct 24.
4
Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography.
J Biomech. 2013 Mar 15;46(5):863-70. doi: 10.1016/j.jbiomech.2012.12.024. Epub 2013 Jan 24.
5
Strain Localization in an Oscillating Maxwell Viscoelastic Cylinder.
Int J Solids Struct. 2014 Jan 15;51(2):305-313. doi: 10.1016/j.ijsolstr.2013.09.022.
6
Simulation of harmonic shear waves in the human brain and comparison with measurements from magnetic resonance elastography.
J Mech Behav Biomed Mater. 2021 Jun;118:104449. doi: 10.1016/j.jmbbm.2021.104449. Epub 2021 Mar 17.
7
Material characterization and simulation for soft gels subjected to impulsive loading.
J Mech Behav Biomed Mater. 2022 Sep;133:105293. doi: 10.1016/j.jmbbm.2022.105293. Epub 2022 May 27.
8
Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
Australas Phys Eng Sci Med. 2016 Mar;39(1):187-97. doi: 10.1007/s13246-015-0417-7. Epub 2016 Jan 14.
10
Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
Phys Med Biol. 2011 Oct 7;56(19):6379-400. doi: 10.1088/0031-9155/56/19/014. Epub 2011 Sep 9.

引用本文的文献

1
In-silico heart model phantom to validate cardiac strain imaging.
bioRxiv. 2024 Aug 7:2024.08.05.606672. doi: 10.1101/2024.08.05.606672.
2
Sulcal Cavitation in Linear Head Acceleration: Possible Correlation With Chronic Traumatic Encephalopathy.
Front Neurol. 2022 Feb 28;13:832370. doi: 10.3389/fneur.2022.832370. eCollection 2022.
3
Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network.
J Biomech. 2022 Jan;130:110878. doi: 10.1016/j.jbiomech.2021.110878. Epub 2021 Nov 27.
4
In vivo estimates of axonal stretch and 3D brain deformation during mild head impact.
Brain Multiphys. 2020 Nov;1. doi: 10.1016/j.brain.2020.100015. Epub 2020 Sep 3.
5
Natural oscillatory modes of 3D deformation of the human brain in vivo.
J Biomech. 2021 Apr 15;119:110259. doi: 10.1016/j.jbiomech.2021.110259. Epub 2021 Feb 10.
6
Ischemic Mitral Regurgitation: Abnormal Strain Overestimates Nonviable Myocardium.
Ann Thorac Surg. 2018 Jun;105(6):1754-1761. doi: 10.1016/j.athoracsur.2018.01.005. Epub 2018 Jan 31.
7
Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence.
J Biomech. 2014 Nov 7;47(14):3475-81. doi: 10.1016/j.jbiomech.2014.09.010. Epub 2014 Sep 28.
8
Strain Localization in an Oscillating Maxwell Viscoelastic Cylinder.
Int J Solids Struct. 2014 Jan 15;51(2):305-313. doi: 10.1016/j.ijsolstr.2013.09.022.
10
Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects.
Front Neurol. 2013 May 30;4:59. doi: 10.3389/fneur.2013.00059. eCollection 2013.

本文引用的文献

1
Deformation of the human brain induced by mild acceleration.
J Neurotrauma. 2005 Aug;22(8):845-56. doi: 10.1089/neu.2005.22.845.
4
Comparison of quantitative shear wave MR-elastography with mechanical compression tests.
Magn Reson Med. 2003 Jan;49(1):71-7. doi: 10.1002/mrm.10343.
5
Imaging heart motion using harmonic phase MRI.
IEEE Trans Med Imaging. 2000 Mar;19(3):186-202. doi: 10.1109/42.845177.
6
Rapid MRI and velocimetry of cylindrical Couette flow.
Magn Reson Imaging. 1998 Oct;16(8):953-61. doi: 10.1016/s0730-725x(98)00089-7.
7
Strategies for Rapid NMR Rheometry by Magnetic Resonance Imaging Velocimetry.
J Magn Reson. 1997 Mar;125(1):43-51. doi: 10.1006/jmre.1996.1084.
8
The nature, distribution and causes of traumatic brain injury.
Brain Pathol. 1995 Oct;5(4):397-406. doi: 10.1111/j.1750-3639.1995.tb00618.x.
9
Magnetic resonance elastography by direct visualization of propagating acoustic strain waves.
Science. 1995 Sep 29;269(5232):1854-7. doi: 10.1126/science.7569924.
10
Mathematical model of a head subjected to an angular acceleration.
J Biomech. 1973 Sep;6(5):487-95. doi: 10.1016/0021-9290(73)90007-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验