The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Nat Nanotechnol. 2010 Jun;5(6):417-22. doi: 10.1038/nnano.2010.88. Epub 2010 May 30.
Biological systems that are capable of performing computational operations could be of use in bioengineering and nanomedicine, and DNA and other biomolecules have already been used as active components in biocomputational circuits. There have also been demonstrations of DNA/RNA-enzyme-based automatons, logic control of gene expression, and RNA systems for processing of intracellular information. However, for biocomputational circuits to be useful for applications it will be necessary to develop a library of computing elements, to demonstrate the modular coupling of these elements, and to demonstrate that this approach is scalable. Here, we report the construction of a DNA-based computational platform that uses a library of catalytic nucleic acids (DNAzymes), and their substrates, for the input-guided dynamic assembly of a universal set of logic gates and a half-adder/half-subtractor system. We demonstrate multilayered gate cascades, fan-out gates and parallel logic gate operations. In response to input markers, the system can regulate the controlled expression of anti-sense molecules, or aptamers, that act as inhibitors for enzymes.
能够进行计算操作的生物系统在生物工程和纳米医学中可能会有应用,而 DNA 和其他生物分子已经被用作生物计算电路中的活性成分。已经有 DNA/RNA-酶基自动机、基因表达的逻辑控制以及用于处理细胞内信息的 RNA 系统的演示。然而,为了使生物计算电路在应用中有用,有必要开发一个计算元件库,展示这些元件的模块化耦合,并证明这种方法是可扩展的。在这里,我们报告了一种基于 DNA 的计算平台的构建,该平台使用了一系列催化性核酸(DNA 酶)及其底物,用于在输入引导下动态组装通用的逻辑门和半加器/半减法器系统。我们展示了多层门级联、扇出门和并行逻辑门操作。该系统可以响应输入标记,调节反义分子或适体的受控表达,这些分子或适体作为酶的抑制剂。