Suppr超能文献

在局部和全局网络中识别时域和频域中的相互作用——格兰杰因果关系方法。

Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

机构信息

Department of Computer Science, University of Warwick, Coventry, UK.

出版信息

BMC Bioinformatics. 2010 Jun 21;11:337. doi: 10.1186/1471-2105-11-337.

Abstract

BACKGROUND

Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality.

RESULTS

Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered.

CONCLUSIONS

The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

摘要

背景

基于多维时空数据,贝叶斯网络推断、常微分方程 (ODE) 和信息论等逆向工程方法被广泛应用于推导基因、蛋白质、代谢物、神经元、脑区等不同元素之间的因果关系。有几种成熟的逆向工程方法可以探索动态网络中的因果关系,例如常微分方程 (ODE)、贝叶斯网络、信息论和格兰杰因果关系。

结果

在这里,我们重点关注时域和频域中的格兰杰因果关系,以及局部和全局网络中的格兰杰因果关系,并将我们的方法应用于实验数据(基因和蛋白质)。对于一个小的基因网络,格兰杰因果关系优于上述其他三种方法。使用一种新方法重建了一个包含 812 种蛋白质的全局蛋白质网络。得到的结果与已知的实验结果吻合良好,并预测了许多可通过实验验证的结果。除了时域中的相互作用外,还恢复了频域中的相互作用。

结论

蛋白质组学数据和基因数据的结果证实,格兰杰因果关系是一种简单而准确的方法,可以恢复网络结构。我们的方法具有通用性,可以很容易地应用于其他类型的时间序列数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbf8/2897832/2785f0c318b3/1471-2105-11-337-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验