Suppr超能文献

使用上下文分类器对乳腺组织微阵列图像进行免疫组织化学分析。

Immunohistochemical analysis of breast tissue microarray images using contextual classifiers.

作者信息

McKenna Stephen J, Amaral Telmo, Akbar Shazia, Jordan Lee, Thompson Alastair

机构信息

School of Computing, University of Dundee, Dundee DD1 4HN, UK.

出版信息

J Pathol Inform. 2013 Mar 30;4(Suppl):S13. doi: 10.4103/2153-3539.109871. Print 2013.

Abstract

BACKGROUND

Tissue microarrays (TMAs) are an important tool in translational research for examining multiple cancers for molecular and protein markers. Automatic immunohistochemical (IHC) scoring of breast TMA images remains a challenging problem.

METHODS

A two-stage approach that involves localization of regions of invasive and in-situ carcinoma followed by ordinal IHC scoring of nuclei in these regions is proposed. The localization stage classifies locations on a grid as tumor or non-tumor based on local image features. These classifications are then refined using an auto-context algorithm called spin-context. Spin-context uses a series of classifiers to integrate image feature information with spatial context information in the form of estimated class probabilities. This is achieved in a rotationally-invariant manner. The second stage estimates ordinal IHC scores in terms of the strength of staining and the proportion of nuclei stained. These estimates take the form of posterior probabilities, enabling images with uncertain scores to be referred for pathologist review.

RESULTS

The method was validated against manual pathologist scoring on two nuclear markers, progesterone receptor (PR) and estrogen receptor (ER). Errors for PR data were consistently lower than those achieved with ER data. Scoring was in terms of estimated proportion of cells that were positively stained (scored on an ordinal scale of 0-6) and perceived strength of staining (scored on an ordinal scale of 0-3). Average absolute differences between predicted scores and pathologist-assigned scores were 0.74 for proportion of cells and 0.35 for strength of staining (PR).

CONCLUSIONS

The use of context information via spin-context improved the precision and recall of tumor localization. The combination of the spin-context localization method with the automated scoring method resulted in reduced IHC scoring errors.

摘要

背景

组织微阵列(TMAs)是转化研究中的一种重要工具,用于检测多种癌症的分子和蛋白质标志物。乳腺TMA图像的自动免疫组织化学(IHC)评分仍然是一个具有挑战性的问题。

方法

提出了一种两阶段方法,该方法包括侵袭性和原位癌区域的定位,然后对这些区域的细胞核进行有序IHC评分。定位阶段根据局部图像特征将网格上的位置分类为肿瘤或非肿瘤。然后使用一种称为自旋上下文的自动上下文算法对这些分类进行细化。自旋上下文使用一系列分类器,以估计类概率的形式将图像特征信息与空间上下文信息集成。这是以旋转不变的方式实现的。第二阶段根据染色强度和染色细胞核的比例估计有序IHC评分。这些估计采用后验概率的形式,使评分不确定的图像能够提交给病理学家进行审查。

结果

该方法针对两种核标志物,即孕激素受体(PR)和雌激素受体(ER),与病理学家的手动评分进行了验证。PR数据的误差始终低于ER数据的误差。评分依据阳性染色细胞的估计比例(按0 - 6的有序尺度评分)和观察到的染色强度(按0 - 3的有序尺度评分)。预测评分与病理学家指定评分之间的平均绝对差异,细胞比例为0.74,染色强度为0.35(PR)。

结论

通过自旋上下文使用上下文信息提高了肿瘤定位的精度和召回率。自旋上下文定位方法与自动评分方法的结合减少了IHC评分误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3881/3678746/9802f9b07d33/JPI-4-13-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验