Suppr超能文献

通过对 YouTube 视频内容分析加速自闭症早期检测的潜力。

The potential of accelerating early detection of autism through content analysis of YouTube videos.

机构信息

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America.

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America; Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, California, United States of America.

出版信息

PLoS One. 2014 Apr 16;9(4):e93533. doi: 10.1371/journal.pone.0093533. eCollection 2014.

Abstract

Autism is on the rise, with 1 in 88 children receiving a diagnosis in the United States, yet the process for diagnosis remains cumbersome and time consuming. Research has shown that home videos of children can help increase the accuracy of diagnosis. However the use of videos in the diagnostic process is uncommon. In the present study, we assessed the feasibility of applying a gold-standard diagnostic instrument to brief and unstructured home videos and tested whether video analysis can enable more rapid detection of the core features of autism outside of clinical environments. We collected 100 public videos from YouTube of children ages 1-15 with either a self-reported diagnosis of an ASD (N = 45) or not (N = 55). Four non-clinical raters independently scored all videos using one of the most widely adopted tools for behavioral diagnosis of autism, the Autism Diagnostic Observation Schedule-Generic (ADOS). The classification accuracy was 96.8%, with 94.1% sensitivity and 100% specificity, the inter-rater correlation for the behavioral domains on the ADOS was 0.88, and the diagnoses matched a trained clinician in all but 3 of 22 randomly selected video cases. Despite the diversity of videos and non-clinical raters, our results indicate that it is possible to achieve high classification accuracy, sensitivity, and specificity as well as clinically acceptable inter-rater reliability with nonclinical personnel. Our results also demonstrate the potential for video-based detection of autism in short, unstructured home videos and further suggests that at least a percentage of the effort associated with detection and monitoring of autism may be mobilized and moved outside of traditional clinical environments.

摘要

自闭症的发病率在不断上升,美国每 88 名儿童中就有 1 名被确诊患有自闭症,但诊断过程仍然繁琐耗时。研究表明,儿童的家庭录像可以帮助提高诊断的准确性。然而,视频在诊断过程中的应用并不常见。在本研究中,我们评估了将金标准诊断工具应用于简短、非结构化家庭录像的可行性,并测试了视频分析是否能在临床环境之外更快速地发现自闭症的核心特征。我们从 YouTube 上收集了 100 段 1 至 15 岁儿童的公开视频,这些儿童或自我报告患有自闭症谱系障碍(ASD)(N = 45),或未报告患有自闭症谱系障碍(N = 55)。四名非临床评估者使用最广泛的自闭症行为诊断工具之一——自闭症诊断观察量表通用版(ADOS),独立地对所有视频进行评分。分类准确率为 96.8%,敏感性为 94.1%,特异性为 100%,ADOS 行为领域的组内相关系数为 0.88,在随机选择的 22 个视频案例中,除了 3 个案例外,所有的诊断结果都与训练有素的临床医生相符。尽管视频和非临床评估者的多样性很大,但我们的结果表明,非临床人员可以实现高分类准确率、敏感性和特异性,以及临床可接受的组内相关系数。我们的研究结果还表明,在简短、非结构化的家庭录像中,通过视频检测自闭症是有可能的,这进一步表明,与检测和监测自闭症相关的工作至少有一部分可以在传统临床环境之外进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/3989176/e893ef15bf8d/pone.0093533.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验