Christodoulou Anthony G, Hitchens T Kevin, Wu Yijen L, Ho Chien, Liang Zhi-Pei
IEEE Trans Biomed Eng. 2014 Sep;61(9):2451-7. doi: 10.1109/TBME.2014.2320463.
Sparse sampling methods have emerged as effective tools to accelerate cardiac magnetic resonance imaging (MRI).Low-rank model-based cardiac imaging uses a predetermined temporal subspace for image reconstruction from highly undersampled (k, t)-space data and has been demonstrated effective for high-speed cardiac MRI. The accuracy of the temporal subspace isa key factor in these methods, yet little work has been published on data acquisition strategies to improve subspace estimation. This paper investigates the use of non-Cartesian k-space trajectories to replace the Cartesian trajectories that are omnipresent but are highly sensitive to readout direction. We also propose "self-navigated" pulse sequences that collect both navigator data (for determining the temporal subspace) and imaging data after every RF pulse, allowing for even greater acceleration. We investigate subspace estimation strategies through analysis of phantom images and demonstrate in vivo cardiac imaging in rats and mice without the use of ECG or respiratory gating. The proposed methods achieved 3-D imaging of wall motion, first-pass myocardial perfusion, and late gadolinium enhancement in rats at 74 frames/s,as well as 2-D imaging of wall motion in mice at 97 frames/s.
稀疏采样方法已成为加速心脏磁共振成像(MRI)的有效工具。基于低秩模型的心脏成像使用预定的时间子空间从高度欠采样的(k,t)空间数据进行图像重建,并且已被证明对高速心脏MRI有效。时间子空间的准确性是这些方法的关键因素,但关于改进子空间估计的数据采集策略的研究很少。本文研究使用非笛卡尔k空间轨迹来替代无处不在但对读出方向高度敏感的笛卡尔轨迹。我们还提出了“自导航”脉冲序列,该序列在每个射频脉冲后收集导航数据(用于确定时间子空间)和成像数据,从而实现更大程度的加速。我们通过分析体模图像研究子空间估计策略,并在不使用心电图或呼吸门控的情况下在大鼠和小鼠体内进行心脏成像。所提出的方法实现了以74帧/秒的速度对大鼠的壁运动、首过心肌灌注和延迟钆增强进行三维成像,以及以97帧/秒的速度对小鼠的壁运动进行二维成像。