Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA.
Nat Commun. 2014 Jun 13;5:4097. doi: 10.1038/ncomms5097.
Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).
碳纳米管和金属氧化物半导体分别成为了制备 p 型和 n 型薄膜晶体管的重要材料;然而,由于制备 n 型碳纳米管晶体管和 p 型金属氧化物晶体管的困难,实现复杂的互补模式的宏观电子学一直具有挑战性。在这里,我们报告了 p 型碳纳米管和 n 型铟镓锌氧化物薄膜晶体管的混合集成,从而在刚性和柔性衬底上实现了大规模(501 级环形振荡器超过 1000 个晶体管)互补宏观电子电路。这种混合集成的方法使我们能够结合 p 型碳纳米管和 n 型铟镓锌氧化物薄膜晶体管的优势,并提供高器件产量和低器件变化。基于这种方法,我们报告了各种逻辑门(反相器、与非门和或非门)、环形振荡器(51 级到 501 级)和动态逻辑电路(动态反相器、与非门和或非门)的成功演示。