Suppr超能文献

活细菌疫苗载体:概述

Live bacterial vaccine vectors: an overview.

作者信息

da Silva Adilson José, Zangirolami Teresa Cristina, Novo-Mansur Maria Teresa Marques, Giordano Roberto de Campos, Martins Elizabeth Angélica Leme

机构信息

Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil.

Departamento de Genética e Evolução Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.

出版信息

Braz J Microbiol. 2015 Mar 4;45(4):1117-29. doi: 10.1590/s1517-83822014000400001. eCollection 2014.

Abstract

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.

摘要

基因减毒微生物、病原体和一些共生细菌可经改造以递送重组异源抗原,从而刺激宿主免疫系统,同时仍具备较高的安全性。这些活载体的一个关键特性是它们能够刺激黏膜免疫以及体液和/或细胞全身免疫。这使得能够采用不同形式的疫苗接种来预防病原体在黏膜组织的定植,而黏膜组织是许多感染因子进入人体的门户。此外,利用这些特殊载体可以实现DNA疫苗和免疫系统刺激分子(如细胞因子)的递送,这些载体的佐剂特性以及有时的侵袭能力可增强免疫反应。最近,这些载体的独特特性和多功能性还被用于开发抗癌疫苗,用于递送肿瘤相关抗原、细胞因子以及DNA或RNA分子。不同的策略和基因工具不断被开发出来,提高了这些系统所递送制剂的抗原潜力,为将载体用于新目的开辟了新的前景。在此,我们总结了不同类型活细菌载体的主要特征,并讨论了这些递送系统在疫苗学领域的新应用。

相似文献

1
Live bacterial vaccine vectors: an overview.
Braz J Microbiol. 2015 Mar 4;45(4):1117-29. doi: 10.1590/s1517-83822014000400001. eCollection 2014.
2
Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery.
Vaccines (Basel). 2015 Nov 10;3(4):940-72. doi: 10.3390/vaccines3040940.
3
Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review.
Immunol Lett. 2018 May;197:70-77. doi: 10.1016/j.imlet.2018.03.006. Epub 2018 Mar 14.
5
The use of live attenuated bacteria as a delivery system for heterologous antigens.
J Drug Target. 2003;11(8-10):471-9. doi: 10.1080/10611860410001670008.
7
Genetic immunization: bacteria as DNA vaccine delivery vehicles.
Hum Vaccin. 2008 May-Jun;4(3):189-202. doi: 10.4161/hv.4.3.6314. Epub 2010 May 14.
8
Biological safety concepts of genetically modified live bacterial vaccines.
Vaccine. 2007 Jul 26;25(30):5598-605. doi: 10.1016/j.vaccine.2006.11.058. Epub 2006 Dec 5.
9
Use of Bordetella bronchiseptica and Bordetella pertussis as live vaccines and vectors for heterologous antigens.
FEMS Immunol Med Microbiol. 2003 Jul 15;37(2-3):121-8. doi: 10.1016/S0928-8244(03)00068-3.
10
Attenuated salmonella and Shigella as carriers for DNA vaccines.
J Drug Target. 2003;11(8-10):481-8. doi: 10.1080/10611860410001670053.

引用本文的文献

2
Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria.
Mater Today Bio. 2024 Nov 16;29:101349. doi: 10.1016/j.mtbio.2024.101349. eCollection 2024 Dec.
3
Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology.
Microb Biotechnol. 2025 Jan;18(1):e70080. doi: 10.1111/1751-7915.70080.
4
Enteral Route Nanomedicine for Cancer Therapy.
Int J Nanomedicine. 2024 Sep 25;19:9889-9919. doi: 10.2147/IJN.S482329. eCollection 2024.
6
Genetic engineering of spp. for novel vaccine strategies and therapeutics.
EcoSal Plus. 2024 Dec 12;12(1):eesp00042023. doi: 10.1128/ecosalplus.esp-0004-2023. Epub 2024 Jul 18.
7
Induction of protective immune responses at respiratory mucosal sites.
Hum Vaccin Immunother. 2024 Dec 31;20(1):2368288. doi: 10.1080/21645515.2024.2368288. Epub 2024 Jul 2.
8
: a promising vector for tumor immunotherapy.
Front Immunol. 2023 Oct 6;14:1278011. doi: 10.3389/fimmu.2023.1278011. eCollection 2023.
9
Bacterial Drug Delivery Systems for Cancer Therapy: "Why" and "How".
Pharmaceutics. 2023 Aug 27;15(9):2214. doi: 10.3390/pharmaceutics15092214.
10
Current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment.
Front Immunol. 2023 Sep 5;14:1255799. doi: 10.3389/fimmu.2023.1255799. eCollection 2023.

本文引用的文献

3
Autophagy and the immune system.
Annu Rev Immunol. 2012;30:611-46. doi: 10.1146/annurev-immunol-020711-074948.
6
New insights in mucosal vaccine development.
Vaccine. 2012 Jan 5;30(2):142-54. doi: 10.1016/j.vaccine.2011.11.003. Epub 2011 Nov 12.
7
Attenuated Bordetella pertussis BPZE1 as a live vehicle for heterologous vaccine antigens delivery through the nasal route.
Bioeng Bugs. 2011 Nov-Dec;2(6):315-9. doi: 10.4161/bbug.2.6.18167. Epub 2011 Nov 1.
8
Intracellular recognition of pathogens and autophagy as an innate immune host defence.
J Biochem. 2011 Aug;150(2):143-9. doi: 10.1093/jb/mvr083. Epub 2011 Jul 5.
9
Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants.
Braz J Med Biol Res. 2011 Jun;44(6):500-13. doi: 10.1590/s0100-879x2011007500064. Epub 2011 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验