Suppr超能文献

一种用于电子显微镜分割的上下文感知延迟聚集框架。

A context-aware delayed agglomeration framework for electron microscopy segmentation.

作者信息

Parag Toufiq, Chakraborty Anirban, Plaza Stephen, Scheffer Louis

机构信息

Janelia Research Campus, HHMI, Ashburn, VA, USA.

Department of Diagnostic Radiology, National University of Singapore, Singapore.

出版信息

PLoS One. 2015 May 27;10(5):e0125825. doi: 10.1371/journal.pone.0125825. eCollection 2015.

Abstract

Electron Microscopy (EM) image (or volume) segmentation has become significantly important in recent years as an instrument for connectomics. This paper proposes a novel agglomerative framework for EM segmentation. In particular, given an over-segmented image or volume, we propose a novel framework for accurately clustering regions of the same neuron. Unlike existing agglomerative methods, the proposed context-aware algorithm divides superpixels (over-segmented regions) of different biological entities into different subsets and agglomerates them separately. In addition, this paper describes a "delayed" scheme for agglomerative clustering that postpones some of the merge decisions, pertaining to newly formed bodies, in order to generate a more confident boundary prediction. We report significant improvements attained by the proposed approach in segmentation accuracy over existing standard methods on 2D and 3D datasets.

摘要

近年来,电子显微镜(EM)图像(或体数据)分割作为连接组学的一种工具变得极为重要。本文提出了一种用于EM分割的新型凝聚框架。具体而言,给定一个过分割的图像或体数据,我们提出了一个用于准确聚类同一神经元区域的新型框架。与现有的凝聚方法不同,所提出的上下文感知算法将不同生物实体的超像素(过分割区域)划分为不同子集并分别进行凝聚。此外,本文描述了一种用于凝聚聚类的“延迟”方案,该方案推迟一些与新形成物体相关的合并决策,以便生成更可靠的边界预测。我们报告了所提出的方法在2D和3D数据集上的分割精度相对于现有标准方法有显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44bc/4446358/801ebbc5f654/pone.0125825.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验