Parag Toufiq, Chakraborty Anirban, Plaza Stephen, Scheffer Louis
Janelia Research Campus, HHMI, Ashburn, VA, USA.
Department of Diagnostic Radiology, National University of Singapore, Singapore.
PLoS One. 2015 May 27;10(5):e0125825. doi: 10.1371/journal.pone.0125825. eCollection 2015.
Electron Microscopy (EM) image (or volume) segmentation has become significantly important in recent years as an instrument for connectomics. This paper proposes a novel agglomerative framework for EM segmentation. In particular, given an over-segmented image or volume, we propose a novel framework for accurately clustering regions of the same neuron. Unlike existing agglomerative methods, the proposed context-aware algorithm divides superpixels (over-segmented regions) of different biological entities into different subsets and agglomerates them separately. In addition, this paper describes a "delayed" scheme for agglomerative clustering that postpones some of the merge decisions, pertaining to newly formed bodies, in order to generate a more confident boundary prediction. We report significant improvements attained by the proposed approach in segmentation accuracy over existing standard methods on 2D and 3D datasets.
近年来,电子显微镜(EM)图像(或体数据)分割作为连接组学的一种工具变得极为重要。本文提出了一种用于EM分割的新型凝聚框架。具体而言,给定一个过分割的图像或体数据,我们提出了一个用于准确聚类同一神经元区域的新型框架。与现有的凝聚方法不同,所提出的上下文感知算法将不同生物实体的超像素(过分割区域)划分为不同子集并分别进行凝聚。此外,本文描述了一种用于凝聚聚类的“延迟”方案,该方案推迟一些与新形成物体相关的合并决策,以便生成更可靠的边界预测。我们报告了所提出的方法在2D和3D数据集上的分割精度相对于现有标准方法有显著提高。