Suppr超能文献

基于支持向量机的颅内脑电图信号癫痫发作预测系统

SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal.

作者信息

Shiao Han-Tai, Cherkassky Vladimir, Lee Jieun, Veber Brandon, Patterson Edward E, Brinkmann Benjamin H, Worrell Gregory A

出版信息

IEEE Trans Biomed Eng. 2017 May;64(5):1011-1022. doi: 10.1109/TBME.2016.2586475. Epub 2016 Jun 29.

Abstract

OBJECTIVE

This paper describes a data-analytic modeling approach for the prediction of epileptic seizures from intracranial electroencephalogram (iEEG) recording of brain activity. Even though it is widely accepted that statistical characteristics of iEEG signal change prior to seizures, robust seizure prediction remains a challenging problem due to subject-specific nature of data-analytic modeling.

METHODS

Our work emphasizes the understanding of clinical considerations important for iEEG-based seizure prediction, and proper translation of these clinical considerations into data-analytic modeling assumptions. Several design choices during preprocessing and postprocessing are considered and investigated for their effect on seizure prediction accuracy.

RESULTS

Our empirical results show that the proposed support vector machine-based seizure prediction system can achieve robust prediction of preictal and interictal iEEG segments from dogs with epilepsy. The sensitivity is about 90-100%, and the false-positive rate is about 0-0.3 times per day. The results also suggest that good prediction is subject specific (dog or human), in agreement with earlier studies.

CONCLUSION

Good prediction performance is possible only if the training data contain sufficiently many seizure episodes, i.e., at least 5-7 seizures.

SIGNIFICANCE

The proposed system uses subject-specific modeling and unbalanced training data. This system also utilizes three different time scales during training and testing stages.

摘要

目的

本文描述了一种数据分析建模方法,用于从颅内脑电图(iEEG)记录的脑活动中预测癫痫发作。尽管人们普遍认为癫痫发作前iEEG信号的统计特征会发生变化,但由于数据分析建模具有个体特异性,可靠的癫痫发作预测仍然是一个具有挑战性的问题。

方法

我们的工作强调理解对基于iEEG的癫痫发作预测重要的临床因素,并将这些临床因素正确转化为数据分析建模假设。考虑并研究了预处理和后处理过程中的几种设计选择对癫痫发作预测准确性的影响。

结果

我们的实证结果表明,所提出的基于支持向量机的癫痫发作预测系统能够对患有癫痫的犬类的发作期和发作间期iEEG片段进行可靠预测。灵敏度约为90 - 100%,假阳性率约为每天0 - 0.3次。结果还表明,良好的预测具有个体特异性(犬类或人类),这与早期研究一致。

结论

只有当训练数据包含足够多的癫痫发作事件,即至少5 - 7次发作时,才可能实现良好的预测性能。

意义

所提出的系统使用个体特异性建模和不平衡训练数据。该系统在训练和测试阶段还利用了三种不同的时间尺度。

相似文献

1
SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal.基于支持向量机的颅内脑电图信号癫痫发作预测系统
IEEE Trans Biomed Eng. 2017 May;64(5):1011-1022. doi: 10.1109/TBME.2016.2586475. Epub 2016 Jun 29.
4
Seizure Forecasting and the Preictal State in Canine Epilepsy.犬癫痫的发作预测与发作前期状态
Int J Neural Syst. 2017 Feb;27(1):1650046. doi: 10.1142/S0129065716500465. Epub 2016 Jun 14.

引用本文的文献

4
Electrophysiological analysis of ENG signals in patients with Covid-19.新冠病毒病患者ENG信号的电生理分析
IBRO Neurosci Rep. 2023 Aug 10;15:151-157. doi: 10.1016/j.ibneur.2023.08.002. eCollection 2023 Dec.
8
[Research progress of epileptic seizure predictions based on electroencephalogram signals].基于脑电图信号的癫痫发作预测研究进展
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Dec 25;38(6):1193-1202. doi: 10.7507/1001-5515.202105052.

本文引用的文献

3
On the proper selection of preictal period for seizure prediction.论癫痫发作预测中发作前期的恰当选择。
Epilepsy Behav. 2015 May;46:158-66. doi: 10.1016/j.yebeh.2015.03.010. Epub 2015 May 3.
4
Epileptic seizure prediction using relative spectral power features.基于相对频谱功率特征的癫痫发作预测
Clin Neurophysiol. 2015 Feb;126(2):237-48. doi: 10.1016/j.clinph.2014.05.022. Epub 2014 Jun 4.
7
Forecasting seizures in dogs with naturally occurring epilepsy.预测自然发生癫痫的犬类的癫痫发作情况。
PLoS One. 2014 Jan 8;9(1):e81920. doi: 10.1371/journal.pone.0081920. eCollection 2014.
9
Seizure prediction and documentation--two important problems.癫痫发作预测与记录——两个重要问题。
Lancet Neurol. 2013 Jun;12(6):531-2. doi: 10.1016/S1474-4422(13)70092-9. Epub 2013 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验