Suppr超能文献

1型糖尿病的生理不变性进餐检测

Physiology-Invariant Meal Detection for Type 1 Diabetes.

作者信息

Weimer James, Chen Sanjian, Peleckis Amy, Rickels Michael R, Lee Insup

机构信息

1 Department of Computer and Information Science, University of Pennsylvania , Philadelphia, Pennsylvania.

2 Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.

出版信息

Diabetes Technol Ther. 2016 Oct;18(10):616-624. doi: 10.1089/dia.2015.0266. Epub 2016 Oct 5.

Abstract

BACKGROUND

Fully automated artificial pancreas systems require meal detectors to supplement blood glucose level regulation, where false meal detections can cause unnecessary insulin delivery with potentially fatal consequences, and missed detections may cause the patient to experience extreme hyperglycemia. Most existing meal detectors monitor various measures of glucose rate-of-change to detect meals where varying physiology and meal content complicate balancing detector sensitivity versus specificity.

METHODS

We developed a novel meal detector based on a minimal glucose-insulin metabolism model and show that the detector is, by design, invariant to patient-specific physiological parameters in the minimal model. Our physiological parameter-invariant (PAIN) detector achieves a near-constant false alarm rate across all individuals and is evaluated against three other major existing meal detectors on a clinical type 1 diabetes data set.

RESULTS

In the clinical evaluation, the PAIN-based detector achieves an 86.9% sensitivity for an average false alarm rate of two alarms per day. In addition, for all false alarm rates, the PAIN-based detector performance is significantly better than three other existing meal detectors. In addition, the evaluation results show that the PAIN-based detector uniquely (as compared with the other meal detectors) has low variance in detection and false alarm rates across all patients, without patient-specific personalization.

CONCLUSIONS

The PAIN-based meal detector has demonstrated better detection performance than existing meal detectors, and it has the unique strength of achieving a consistent performance across a population with varying physiology without any individual-level parameter tuning or training.

摘要

背景

全自动化人工胰腺系统需要餐食检测器来辅助调节血糖水平,其中误餐检测可能导致不必要的胰岛素注射,从而带来潜在的致命后果,而漏检可能会使患者出现严重高血糖。大多数现有的餐食检测器通过监测血糖变化率的各种指标来检测餐食,但个体生理差异和餐食成分各不相同,这使得平衡检测器的灵敏度和特异性变得复杂。

方法

我们基于一个简化的葡萄糖 - 胰岛素代谢模型开发了一种新型餐食检测器,并证明该检测器在设计上对简化模型中患者特定的生理参数具有不变性。我们的生理参数不变(PAIN)检测器在所有个体中实现了近乎恒定的误报率,并在一个临床1型糖尿病数据集上与其他三种主要的现有餐食检测器进行了对比评估。

结果

在临床评估中,基于PAIN的检测器实现了86.9%的灵敏度,平均误报率为每天两次警报。此外,对于所有误报率,基于PAIN的检测器的性能显著优于其他三种现有餐食检测器。此外,评估结果表明,基于PAIN的检测器(与其他餐食检测器相比)在所有患者中的检测率和误报率方差较低,无需针对患者进行个性化设置。

结论

基于PAIN的餐食检测器已证明其检测性能优于现有餐食检测器,并且具有独特的优势,即在不同生理状态的人群中无需任何个体水平的参数调整或训练就能实现一致的性能。

相似文献

1
Physiology-Invariant Meal Detection for Type 1 Diabetes.1型糖尿病的生理不变性进餐检测
Diabetes Technol Ther. 2016 Oct;18(10):616-624. doi: 10.1089/dia.2015.0266. Epub 2016 Oct 5.

引用本文的文献

5
Insulin Delivery Hardware: Pumps and Pens.胰岛素给药器械:泵和笔
Diabetes Technol Ther. 2023 Feb;25(S1):S30-S43. doi: 10.1089/dia.2023.2503.
10
A New Meal Absorption Model for Artificial Pancreas Systems.人工胰腺系统的新型膳食吸收模型。
J Diabetes Sci Technol. 2022 Jan;16(1):40-51. doi: 10.1177/1932296821990111. Epub 2021 Feb 28.

本文引用的文献

4
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.UVA/帕多瓦1型糖尿病模拟器:新特性
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.
5
Artificial pancreas: past, present, future.人工胰腺:过去、现在与未来。
Diabetes. 2011 Nov;60(11):2672-82. doi: 10.2337/db11-0654.
6
Diabetes: Models, Signals, and Control.糖尿病:模型、信号与控制
IEEE Rev Biomed Eng. 2009 Jan 1;2:54-96. doi: 10.1109/RBME.2009.2036073.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验