LNIO/ICD, UMR 6281, CNRS, Technological University of Troyes, 10004, Troyes, France.
Laboratoire de Neurophotonique UMR8250, CNRS, Faculté des sciences biomédicales et fondamentales, Université Paris Descartes, 75270, Paris, France.
Sci Rep. 2016 Dec 9;6:38647. doi: 10.1038/srep38647.
Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired.
金属氮化物已被提议在某些特定应用中替代贵金属用于等离子体。特别是,氮化钛(TiN)和氮化锆(ZrN)具有与金非常相似的局域等离子体共振,在大小和波长上都非常相似,但它们的温度稳定性要高得多。因此,它们被认为是在需要操作时材料温度较高的纳米等离子体应用中的理想候选材料,例如热辅助磁记录(HAMR)或热光伏。本文详细研究了 TiN 和 ZrN 纳米颗粒与金纳米颗粒的等离子体特性,作为纳米颗粒形态的函数。作为主要结果,无论纳米颗粒形态和波长如何,金属氮化物都被证明是比金差的近场增强剂。与金相比,金属氮化物在近场增强方面的最佳效率是在小而球形的纳米颗粒中获得的,并且不超过 60%。纳米颗粒的放大或不对称会产生不利影响。这些结果降低了金属氮化物在 HAMR 等高温应用中的实用性,尽管它们具有较高的温度稳定性。然而,在共振时,金属氮化物表现出作为热的有效纳米源的能力,并且可能与热等离子体应用相关,其中热量的产生不是有害的,而是期望的。