Suppr超能文献

TR1菌株的基因组序列及该家族的比较基因组学

Genome Sequence of Strain TR1 and Comparative Genomics of Family.

作者信息

Florentino Anna P, Stams Alfons J M, Sánchez-Andrea Irene

机构信息

Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Sub-department of Environmental Technology, Wageningen UniversityWageningen, Netherlands.

Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Centre of Biological Engineering, University of MinhoBraga, Portugal.

出版信息

Front Microbiol. 2017 Feb 20;8:222. doi: 10.3389/fmicb.2017.00222. eCollection 2017.

Abstract

The acidotolerant sulfur reducer was isolated from sediments of Tinto River, an extremely acidic environment. Its ability to grow in a broad range of pH and to tolerate certain heavy metals offers potential for metal recovery processes. Here we report its high-quality draft genome sequence and compare it to the available genome sequences of other members of family: , and . For most species, pairwise comparisons for average nucleotide identity (ANI) and DNA-DNA hybridization (DDH) revealed ANI values from 67.5 to 80% and DDH values from 12.9 to 24.2%. and , however, surpassed the estimated thresholds of species definition for both DDH (98.6%) and ANI (88.1%). Therefore, they should be merged to a single species. Comparative analysis of genomes revealed different gene content for sulfur respiration between and species. Sulfur reductase is only encoded in , in which it is suggested to play a role in sulfur respiration, especially at low pH. Polysulfide reductase is only encoded in species; it is likely that this genus uses polysulfide as electron acceptor. Genes encoding thiosulfate reductase are present in all the genomes, but dissimilatory sulfite reductase is only present in species. Thus, thiosulfate respiration via sulfite is only likely in this genus. Although sulfur disproportionation occurs in species, the molecular mechanism behind this process is not yet understood, hampering a genome prediction. The metabolism of acetate in species can occur via the acetyl-CoA synthetase or via acetate kinase in combination with phosphate acetyltransferase, while in species, it might occur via the acetate kinase. Large differences in gene sets involved in resistance to acidic conditions were not detected among the genomes. Therefore, the regulation of those genes, or a mechanism not yet known, might be responsible for the unique ability of . This is the first report on comparative genomics of sulfur-reducing bacteria, which is valuable to give insight into this poorly understood metabolism, but of great potential for biotechnological purposes and of environmental significance.

摘要

耐酸硫还原菌是从廷托河沉积物中分离出来的,廷托河是一个极端酸性环境。它在广泛的pH范围内生长以及耐受某些重金属的能力为金属回收过程提供了潜力。在此,我们报告其高质量草图基因组序列,并将其与该菌属其他成员的可用基因组序列进行比较。对于大多数物种,平均核苷酸同一性(ANI)和DNA-DNA杂交(DDH)的成对比较显示ANI值在67.5%至80%之间,DDH值在12.9%至24.2%之间。然而,某两个物种在DDH(98.6%)和ANI(88.1%)方面都超过了物种定义的估计阈值。因此,它们应合并为一个单一物种。对这些基因组的比较分析揭示了不同物种之间硫呼吸的基因含量不同。硫还原酶仅在某一物种中编码,据推测它在硫呼吸中起作用,尤其是在低pH条件下。多硫化物还原酶仅在另一物种中编码;该菌属可能使用多硫化物作为电子受体。编码硫代硫酸盐还原酶的基因存在于所有基因组中,但异化亚硫酸盐还原酶仅存在于某一物种中。因此,通过亚硫酸盐进行硫代硫酸盐呼吸可能仅在该菌属中发生。虽然硫歧化反应在某一物种中发生,但其背后的分子机制尚不清楚,这妨碍了基因组预测。某一物种中乙酸盐的代谢可以通过乙酰辅酶A合成酶或通过乙酸激酶与磷酸乙酰转移酶结合来进行,而在另一物种中,可能通过乙酸激酶进行。在这些基因组中未检测到参与耐酸性条件的基因集有很大差异。因此,这些基因的调控或一种未知机制可能是该菌独特能力的原因。这是关于硫还原细菌比较基因组学的首次报告,对于深入了解这种了解甚少的代谢具有重要价值,在生物技术目的和环境意义方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/717a/5317093/e60333d052a0/fmicb-08-00222-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验