Ravichandran Arvind, Vliegenthart Gerrit A, Saggiorato Guglielmo, Auth Thorsten, Gompper Gerhard
Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany; LPTMS, CNRS, University Paris-Sud, Université Paris-Saclay, Orsay, France.
Biophys J. 2017 Sep 5;113(5):1121-1132. doi: 10.1016/j.bpj.2017.07.016.
Cytoskeletal filaments and molecular motors facilitate the micron-scale force generation necessary for the distribution of organelles and the restructuring of the cytoskeleton within eukaryotic cells. Although the mesoscopic structure and the dynamics of such filaments have been studied in vitro and in vivo, their connection with filament polarity-dependent motor-mediated force generation is not well understood. Using 2D Brownian dynamics simulations, we study a dense, confined mixture of rigid microtubules (MTs) and active springs that have arms that cross-link neighboring MT pairs and move unidirectionally on the attached MT. We simulate depletion interactions between MTs using an attractive potential. We show that dimeric motors, with a motile arm on only one of the two MTs, produce large polarity-sorted MT clusters, whereas tetrameric motors, with motile arms on both microtubules, produce bundles. Furthermore, dimeric motors induce, on average, higher velocities between antialigned MTs than tetrameric motors. Our results, where MTs move faster near the confining wall, are consistent with experimental observations in Drosophila oocytes where enhanced microtubule activity is found close to the confining plasma membrane.
细胞骨架丝和分子马达促进了真核细胞内细胞器分布和细胞骨架重组所需的微米级力的产生。尽管已经在体外和体内研究了此类细丝的介观结构和动力学,但它们与细丝极性依赖性马达介导的力产生之间的联系仍未得到很好的理解。我们使用二维布朗动力学模拟,研究了刚性微管(MTs)和活性弹簧的致密、受限混合物,活性弹簧具有交联相邻MT对并在附着的MT上单向移动的臂。我们使用吸引势来模拟MTs之间的耗尽相互作用。我们表明,仅在两个MT中的一个上具有运动臂的二聚体马达会产生大的极性分选MT簇,而在两个微管上都具有运动臂的四聚体马达会产生束状结构。此外,平均而言,二聚体马达在反平行排列的MT之间诱导的速度比四聚体马达更高。我们的结果表明MTs在限制壁附近移动得更快,这与果蝇卵母细胞中的实验观察结果一致,在果蝇卵母细胞中,靠近限制质膜处发现微管活性增强。