Suppr超能文献

肿瘤轮廓勾画中的观察者间变异性影响了使用放射组学来预测突变状态。

Interobserver variability in tumor contouring affects the use of radiomics to predict mutational status.

作者信息

Huang Qiao, Lu Lin, Dercle Laurent, Lichtenstein Philip, Li Yajun, Yin Qian, Zong Min, Schwartz Lawrence, Zhao Binsheng

机构信息

Columbia University Medical Center, Department of Radiology, New York, New York, United States.

出版信息

J Med Imaging (Bellingham). 2018 Jan;5(1):011005. doi: 10.1117/1.JMI.5.1.011005. Epub 2017 Oct 20.

Abstract

Radiomic features characterize tumor imaging phenotype. Nonsmall cell lung cancer (NSCLC) tumors are known for their complexity in shape and wide range in density. We explored the effects of variable tumor contouring on the prediction of epidermal growth factor receptor (EGFR) mutation status by radiomics in NSCLC patients treated with a targeted therapy (Gefitinib). Forty-six early stage NSCLC patients (EGFR mutant:wildtype = 20:26) were included. Three experienced radiologists independently delineated the tumors using a semiautomated segmentation software on a noncontrast-enhanced baseline and three-week post-therapy CT scan images that were reconstructed using 1.25-mm slice thickness and lung kernel. Eighty-nine radiomic features were computed on both scans and their changes (radiomic delta-features) were calculated. The highest area under the curves (AUCs) were 0.87, 0.85, and 0.80 for the three radiologists and the number of significant features ([Formula: see text]) was 3, 5, and 0, respectively. The AUCs of a single feature significantly varied among radiologists (e.g., 0.88, 0.75, and 0.73 for run-length primitive length uniformity). We conclude that a three-week change in tumor imaging phenotype allows identifying the EGFR mutational status of NSCLC. However, interobserver variability in tumor contouring translates into a significant variability in radiomic metrics accuracy.

摘要

放射组学特征可表征肿瘤的影像表型。非小细胞肺癌(NSCLC)肿瘤以其形状复杂和密度范围广泛而闻名。我们探讨了在接受靶向治疗(吉非替尼)的NSCLC患者中,可变肿瘤轮廓对通过放射组学预测表皮生长因子受体(EGFR)突变状态的影响。纳入了46例早期NSCLC患者(EGFR突变型:野生型 = 20:26)。三名经验丰富的放射科医生使用半自动分割软件,在非增强基线和治疗后三周的CT扫描图像上独立勾勒肿瘤轮廓,这些图像使用1.25毫米层厚和肺内核重建。在两次扫描上计算了89个放射组学特征,并计算了它们的变化(放射组学差值特征)。三位放射科医生的曲线下面积(AUC)最高分别为0.87、0.85和0.80,显著特征数量([公式:见原文])分别为3、5和0。单个特征的AUC在放射科医生之间有显著差异(例如,行程原始长度均匀性的AUC分别为0.88、0.75和0.73)。我们得出结论,肿瘤影像表型的三周变化有助于识别NSCLC的EGFR突变状态。然而,肿瘤轮廓勾画的观察者间变异性转化为放射组学指标准确性的显著变异性。

相似文献

引用本文的文献

8
Quality control of radiomic features using 3D-printed CT phantoms.使用3D打印CT体模对影像组学特征进行质量控制
J Med Imaging (Bellingham). 2021 May;8(3):033505. doi: 10.1117/1.JMI.8.3.033505. Epub 2021 Jun 29.

本文引用的文献

7
Cancer statistics, 2016.癌症统计数据,2016 年。
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验