Suppr超能文献

在线癌症社区共享内容分析:系统综述

Analysis of Content Shared in Online Cancer Communities: Systematic Review.

作者信息

van Eenbergen Mies C, van de Poll-Franse Lonneke V, Krahmer Emiel, Verberne Suzan, Mols Floortje

机构信息

Department of Research, Netherlands Comprehensive Cancer Organisation, Utrecht, Netherlands.

Division of Psychosocial Research & Epidemiology, The Netherlands Cancer Institute, Amsterdam, Netherlands.

出版信息

JMIR Cancer. 2018 Apr 3;4(1):e6. doi: 10.2196/cancer.7926.

Abstract

BACKGROUND

The content that cancer patients and their relatives (ie, posters) share in online cancer communities has been researched in various ways. In the past decade, researchers have used automated analysis methods in addition to manual coding methods. Patients, providers, researchers, and health care professionals can learn from experienced patients, provided that their experience is findable.

OBJECTIVE

The aim of this study was to systematically review all relevant literature that analyzes user-generated content shared within online cancer communities. We reviewed the quality of available research and the kind of content that posters share with each other on the internet.

METHODS

A computerized literature search was performed via PubMed (MEDLINE), PsycINFO (5 and 4 stars), Cochrane Central Register of Controlled Trials, and ScienceDirect. The last search was conducted in July 2017. Papers were selected if they included the following terms: (cancer patient) and (support group or health communities) and (online or internet). We selected 27 papers and then subjected them to a 14-item quality checklist independently scored by 2 investigators.

RESULTS

The methodological quality of the selected studies varied: 16 were of high quality and 11 were of adequate quality. Of those 27 studies, 15 were manually coded, 7 automated, and 5 used a combination of methods. The best results can be seen in the papers that combined both analytical methods. The number of analyzed posts ranged from 200 to 1,500,000; the number of analyzed posters ranged from 75 to 90,000. The studies analyzing large numbers of posts mainly related to breast cancer, whereas those analyzing small numbers were related to other types of cancers. A total of 12 studies involved some or entirely automatic analysis of the user-generated content. All the authors referred to two main content categories: informational support and emotional support. In all, 15 studies reported only on the content, 6 studies explicitly reported on content and social aspects, and 6 studies focused on emotional changes.

CONCLUSIONS

In the future, increasing amounts of user-generated content will become available on the internet. The results of content analysis, especially of the larger studies, give detailed insights into patients' concerns and worries, which can then be used to improve cancer care. To make the results of such analyses as usable as possible, automatic content analysis methods will need to be improved through interdisciplinary collaboration.

摘要

背景

癌症患者及其亲属(即发帖者)在在线癌症社区中分享的内容已通过多种方式进行了研究。在过去十年中,研究人员除了使用手动编码方法外,还采用了自动分析方法。患者、医疗服务提供者、研究人员和医疗保健专业人员可以从经验丰富的患者身上学习,前提是他们的经验是可找到的。

目的

本研究的目的是系统回顾所有分析在线癌症社区内用户生成内容的相关文献。我们审查了现有研究的质量以及发帖者在互联网上相互分享的内容类型。

方法

通过PubMed(MEDLINE)、PsycINFO(5星和4星)、Cochrane对照试验中央注册库和ScienceDirect进行计算机化文献检索。最后一次检索于2017年7月进行。如果论文包含以下术语,则被选中:(癌症患者)和(支持小组或健康社区)和(在线或互联网)。我们选择了27篇论文,然后由2名研究人员独立对其进行14项质量清单评分。

结果

所选研究的方法学质量各不相同:16篇质量高,11篇质量尚可。在这27项研究中,15项采用手动编码,7项采用自动分析,5项采用两种方法结合。结合两种分析方法的论文取得了最佳结果。分析的帖子数量从200到150万不等;分析的发帖者数量从75到9万不等。分析大量帖子的研究主要涉及乳腺癌,而分析少量帖子的研究涉及其他类型的癌症。共有12项研究对用户生成内容进行了部分或全部自动分析。所有作者都提到了两个主要内容类别:信息支持和情感支持。总共有15项研究仅报告了内容,6项研究明确报告了内容和社会方面,6项研究关注情感变化。

结论

未来,互联网上将会有越来越多的用户生成内容。内容分析的结果,尤其是大型研究的结果,能让我们深入了解患者的担忧,进而用于改善癌症护理。为了使此类分析结果尽可能有用,需要通过跨学科合作改进自动内容分析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58b/5904449/598089ab6e21/cancer_v4i1e6_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验