Suppr超能文献

卷积神经网络在肺结节检测中的应用:综述

The utilisation of convolutional neural networks in detecting pulmonary nodules: a review.

作者信息

Murphy Andrew, Skalski Matthew, Gaillard Frank

机构信息

1 Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney , Sydney, NSW , Australia.

2 Department of Medical Imaging, Princess Alexandra Hospital , Brisbane, QLD , Australia.

出版信息

Br J Radiol. 2018 Oct;91(1090):20180028. doi: 10.1259/bjr.20180028. Epub 2018 Jun 19.

Abstract

Lung cancer is one of the leading causes of cancer-related fatality in the world. Patients display few or even no signs or symptoms in the early stages, resulting in up to 75% of patients diagnosed in the later stages of the disease. Consequently, there has been a call for lung cancer screening amongst at-risk populations. The early detection of malignant pulmonary nodules in CT is one of the suggested methods proposed to diagnose early-stage lung cancer; however, the reported sensitivity of radiologists' ability to accurately detect pulmonary nodules ranges widely from 30 to 97%. 2012 saw Alex Krizhevsky present a paper titled "ImageNet Classification with Deep Convolutional Networks" in which a multilayered convolutional computational model known as a convolutional neural network (CNN) was confirmed competent in identifying and classifying 1.2 million images to a previously unseen level of accuracy. Since then, CNNs have gained attention as a potential tool in aiding radiologists' detection of pulmonary nodules in CT imaging. This review found the use of CNN is a viable strategy to increase the overall sensitivity of pulmonary nodule detection. Small, non-validated data sets, computational constraints, and incomparable studies are currently limited factors of the existing research.

摘要

肺癌是全球癌症相关死亡的主要原因之一。患者在疾病早期几乎没有甚至没有任何体征或症状,导致高达75%的患者在疾病晚期才被诊断出来。因此,人们呼吁对高危人群进行肺癌筛查。CT检查中早期发现恶性肺结节是诊断早期肺癌的建议方法之一;然而,据报道,放射科医生准确检测肺结节的能力敏感性差异很大,从30%到97%不等。2012年,亚历克斯·克里兹hevsky发表了一篇题为《使用深度卷积网络进行ImageNet分类》的论文,其中一种名为卷积神经网络(CNN)的多层卷积计算模型被证实能够以前所未有的精度识别和分类120万张图像。从那时起,卷积神经网络作为一种辅助放射科医生在CT成像中检测肺结节的潜在工具受到了关注。本综述发现,使用卷积神经网络是提高肺结节检测总体敏感性的可行策略。小型、未经验证的数据集、计算限制和不可比的研究是目前现有研究的限制因素。

相似文献

8
Agile convolutional neural network for pulmonary nodule classification using CT images.基于 CT 图像的肺结节分类的敏捷卷积神经网络。
Int J Comput Assist Radiol Surg. 2018 Apr;13(4):585-595. doi: 10.1007/s11548-017-1696-0. Epub 2018 Feb 23.
10
3D multi-view convolutional neural networks for lung nodule classification.用于肺结节分类的3D多视图卷积神经网络。
PLoS One. 2017 Nov 16;12(11):e0188290. doi: 10.1371/journal.pone.0188290. eCollection 2017.

引用本文的文献

本文引用的文献

1
Pulmonary nodule classification with deep residual networks.基于深度残差网络的肺结节分类。
Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1799-1808. doi: 10.1007/s11548-017-1605-6. Epub 2017 May 13.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
ACR CT accreditation program and the lung cancer screening program designation.ACR CT 认证计划和肺癌筛查计划指定。
J Am Coll Radiol. 2015 Jan;12(1):38-42. doi: 10.1016/j.jacr.2014.10.002. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验