Suppr超能文献

病原体序列数据的实时分析和可视化。

Real-Time Analysis and Visualization of Pathogen Sequence Data.

机构信息

Biozentrum, University of Basel, Basel, Switzerland

SIB Swiss Institute of Bioinformatics, Basel, Switzerland.

出版信息

J Clin Microbiol. 2018 Oct 25;56(11). doi: 10.1128/JCM.00480-18. Print 2018 Nov.

Abstract

The rapid development of sequencing technologies has to led to an explosion of pathogen sequence data, which are increasingly collected as part of routine surveillance or clinical diagnostics. In public health, sequence data are used to reconstruct the evolution of pathogens, to anticipate future spread, and to target interventions. In clinical settings, whole-genome sequencing can identify pathogens at the strain level, can be used to predict phenotypes such as drug resistance and virulence, and can inform treatment by linking closely related cases. While sequencing has become cheaper, the analysis of sequence data has become an important bottleneck. Deriving interpretable and actionable results for a large variety of pathogens, each with its own complexity, from continuously updated data is a daunting task that requires flexible bioinformatic workflows and dissemination platforms. Here, we review recent developments in real-time analyses of pathogen sequence data, with a particular focus on the visualization and integration of sequence and phenotype data.

摘要

测序技术的快速发展导致了病原体序列数据的爆炸式增长,这些数据越来越多地作为常规监测或临床诊断的一部分被收集。在公共卫生领域,序列数据被用于重建病原体的进化,预测未来的传播,并针对干预措施进行目标定位。在临床环境中,全基因组测序可以在菌株水平上识别病原体,可用于预测耐药性和毒力等表型,并通过将密切相关的病例联系起来指导治疗。虽然测序变得更便宜了,但序列数据的分析已成为一个重要的瓶颈。从不断更新的数据中,为各种具有自身复杂性的病原体提取可解释和可操作的结果,是一项艰巨的任务,需要灵活的生物信息学工作流程和传播平台。在这里,我们综述了病原体序列数据实时分析的最新进展,特别关注序列和表型数据的可视化和整合。

相似文献

1
Real-Time Analysis and Visualization of Pathogen Sequence Data.病原体序列数据的实时分析和可视化。
J Clin Microbiol. 2018 Oct 25;56(11). doi: 10.1128/JCM.00480-18. Print 2018 Nov.
4
Practical Approaches for Detecting Selection in Microbial Genomes.检测微生物基因组中选择作用的实用方法
PLoS Comput Biol. 2016 Feb 11;12(2):e1004739. doi: 10.1371/journal.pcbi.1004739. eCollection 2016 Feb.
5
A primer on microbial bioinformatics for nonbioinformaticians.非生物信息学家的微生物生物信息学入门
Clin Microbiol Infect. 2018 Apr;24(4):342-349. doi: 10.1016/j.cmi.2017.12.015. Epub 2018 Jan 5.
7
10
Nextstrain: real-time tracking of pathogen evolution.Nextstrain:实时追踪病原体进化。
Bioinformatics. 2018 Dec 1;34(23):4121-4123. doi: 10.1093/bioinformatics/bty407.

引用本文的文献

3
Sample size calculation for phylogenetic case linkage.系统发育病例链接的样本量计算。
PLoS Comput Biol. 2021 Jul 6;17(7):e1009182. doi: 10.1371/journal.pcbi.1009182. eCollection 2021 Jul.
5
Genomic-informed pathogen surveillance in Africa: opportunities and challenges.非洲基于基因组的病原体监测:机遇与挑战。
Lancet Infect Dis. 2021 Sep;21(9):e281-e289. doi: 10.1016/S1473-3099(20)30939-7. Epub 2021 Feb 12.
9
Nucleic Acids Analysis.核酸分析
Sci China Chem. 2021;64(2):171-203. doi: 10.1007/s11426-020-9864-7. Epub 2020 Dec 2.

本文引用的文献

1
Ultrafast search of all deposited bacterial and viral genomic data.快速搜索所有已存入的细菌和病毒基因组数据。
Nat Biotechnol. 2019 Feb;37(2):152-159. doi: 10.1038/s41587-018-0010-1. Epub 2019 Feb 4.
2
Nextstrain: real-time tracking of pathogen evolution.Nextstrain:实时追踪病原体进化。
Bioinformatics. 2018 Dec 1;34(23):4121-4123. doi: 10.1093/bioinformatics/bty407.
4
TreeTime: Maximum-likelihood phylodynamic analysis.TreeTime:最大似然系统发育动力学分析。
Virus Evol. 2018 Jan 8;4(1):vex042. doi: 10.1093/ve/vex042. eCollection 2018 Jan.
8
panX: pan-genome analysis and exploration.panX:泛基因组分析与探索。
Nucleic Acids Res. 2018 Jan 9;46(1):e5. doi: 10.1093/nar/gkx977.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验