J Am Chem Soc. 2018 Oct 3;140(39):12622-12633. doi: 10.1021/jacs.8b08436. Epub 2018 Sep 21.
Understanding the topology adopted by individual G-quadruplex (GQ)-forming sequences in vivo and targeting a specific GQ motif among others in the genome will have a profound impact on GQ-directed therapeutic strategies. However, this remains a major challenge as most of the tools poorly distinguish different GQ conformations and are not suitable for both cell-free and in-cell analysis. Here, we describe an innovative probe design to investigate GQ conformations and recognition in both cell-free and native cellular environments by using a conformation-sensitive dual-app nucleoside analogue probe. The nucleoside probe, derived by conjugating fluorobenzofuran at the 5-position of 2'-deoxyuridine, is composed of a microenvironment-sensitive fluorophore and an in-cell NMR compatible F label. This noninvasive nucleoside, incorporated into the human telomeric DNA oligonucleotide repeat, serves as a common probe to distinguish different GQ topologies and quantify topology-specific binding of ligands by fluorescence and NMR techniques. Importantly, unique signatures displayed by the F-labeled nucleoside for different GQs enabled a systematic study in Xenopus laevis oocytes to provide new structural insights into the GQ topologies adopted by human telomeric overhang in cells, which so far has remained unclear. Studies using synthetic cell models, immunostaining on fixed cells, and crystallization conditions suggest that parallel GQ is the preferred conformation of telomeric DNA repeat. However, our findings using the dual-app probe clearly indicate that multiple structures including hybrid-type parallel-antiparallel and parallel GQs are formed in the cellular environment. Taken together, our findings open new experimental strategies to investigate topology, recognition, and therapeutic potential of individual GQ-forming motifs in a biologically relevant context.
了解个体 G-四链体(GQ)在体内采用的拓扑结构,并在基因组中针对其他特定的 GQ 基序,将对 GQ 导向的治疗策略产生深远影响。然而,这仍然是一个主要的挑战,因为大多数工具都不能很好地区分不同的 GQ 构象,并且不适合细胞游离和细胞内分析。在这里,我们描述了一种创新的探针设计,通过使用构象敏感的双适体核苷类似物探针来研究细胞游离和天然细胞环境中的 GQ 构象和识别。核苷探针通过在 2'-脱氧尿苷的 5 位连接氟苯并呋喃衍生而成,由微环境敏感的荧光团和细胞内 NMR 兼容的 F 标记组成。这种非侵入性核苷被掺入人端粒 DNA 寡核苷酸重复序列中,用作区分不同 GQ 拓扑结构的通用探针,并通过荧光和 NMR 技术定量拓扑结构特异性配体的结合。重要的是,不同 GQ 显示出独特的 F 标记核苷特征,使我们能够在非洲爪蟾卵母细胞中进行系统研究,为细胞中端粒伸出的 GQ 拓扑结构提供新的结构见解,迄今为止,这一点仍不清楚。使用合成细胞模型、固定细胞免疫染色和结晶条件的研究表明,平行 GQ 是端粒 DNA 重复的首选构象。然而,我们使用双适体探针的研究结果清楚地表明,在细胞环境中形成了多种结构,包括杂交型平行-反平行和平行 GQ。总之,我们的研究结果为在生物学相关背景下研究个体 GQ 形成基序的拓扑结构、识别和治疗潜力提供了新的实验策略。