Suppr超能文献

分心跟车任务中驾驶员认知状态、视觉感知和间歇性注意力的计算模型。

A computational model for driver's cognitive state, visual perception and intermittent attention in a distracted car following task.

作者信息

Pekkanen Jami, Lappi Otto, Rinkkala Paavo, Tuhkanen Samuel, Frantsi Roosa, Summala Heikki

机构信息

Cognitive Science, PO Box 9, 00014 University of Helsinki, Finland.

TRUlab, Department of Digital Humanities, PO Box 9, 00014 University of Helsinki, Finland.

出版信息

R Soc Open Sci. 2018 Sep 5;5(9):180194. doi: 10.1098/rsos.180194. eCollection 2018 Sep.

Abstract

We present a computational model of intermittent visual sampling and locomotor control in a simple yet representative task of a car driver following another vehicle. The model has a number of features that take it beyond the current state of the art in modelling natural tasks, and driving in particular. First, unlike most control theoretical models in vision science and engineering-where control is directly based on observable (optical) variables-actions are based on a temporally enduring internal representation. Second, unlike the more sophisticated engineering driver models based on internal representations, our model explicitly aims to be psychologically plausible, in particular in modelling perceptual processes and their limitations. Third, unlike most psychological models, it is implemented as an actual simulation model capable of full task performance (visual sampling and longitudinal control). The model is developed and validated using a dataset from a simplified car-following experiment ( = 40, in both three-dimensional virtual reality and a real instrumented vehicle). The results replicate our previously reported connection between time headway and visual attention. The model reproduces this connection and predicts that it emerges from control of action uncertainty. Implications for traffic psychological models and future developments for psychologically plausible yet computationally rigorous models of full natural task performance are discussed.

摘要

我们提出了一个计算模型,用于模拟汽车驾驶员跟车这一简单而具有代表性任务中的间歇性视觉采样和运动控制。该模型具有诸多特性,使其超越了当前在自然任务建模,尤其是驾驶建模方面的技术水平。首先,与视觉科学和工程领域的大多数控制理论模型不同(在这些模型中,控制直接基于可观测的(光学)变量),本模型的动作基于一种具有时间持续性的内部表征。其次,与基于内部表征的更复杂的工程驾驶员模型不同,我们的模型明确旨在在心理学上具有合理性,特别是在对感知过程及其局限性进行建模方面。第三,与大多数心理学模型不同,它被实现为一个能够完整执行任务(视觉采样和纵向控制)的实际模拟模型。该模型是使用来自简化跟车实验的数据集(在三维虚拟现实和真实仪器车辆中均有(n = 40)个样本)开发和验证的。结果重现了我们之前报道的车头时距与视觉注意力之间的联系。该模型再现了这种联系,并预测它源于对动作不确定性的控制。我们还讨论了该模型对交通心理学模型的意义以及未来在构建既具有心理学合理性又具有计算严谨性的完整自然任务执行模型方面的发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39bc/6170561/b578269df677/rsos180194-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验