Suppr超能文献

母乳和 NICU 表面可能是婴儿真菌组的真菌来源。

Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes.

机构信息

University of Minnesota, Department of Pediatrics, MMC319, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.

University of Minnesota, Biotechnology Institute and Department of Soil, Water, and Climate, 258 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN, USA.

出版信息

Fungal Genet Biol. 2019 Jul;128:29-35. doi: 10.1016/j.fgb.2019.03.008. Epub 2019 Mar 21.

Abstract

Surfaces within the neonatal intensive care unit (NICU), especially those handled frequently by hospital staff, provide sources of gut-colonizing bacteria for hospitalized infants, in addition to those acquired perinatally from maternal sources such as breastmilk. In comparison to bacteria, very little is known about potential sources of colonizing fungi in the NICU setting. Thus, the objective of this study was to characterize fungal communities (mycobiomes) of potential colonization sources for neonates hospitalized in a large university NICU. We hypothesized that the unit surfaces would contain different mycobiomes than those of human-associated (breastmilk) sources. We characterized mycobiomes of NICU surfaces of multiple individual patient care areas as well as those of breastmilk samples by sequencing the internal transcribed spacer region 2 (ITS2) of the fungal rDNA locus. We found that, across all samples, Candida and Saccharomyces species were the most prevalent taxa and had the greatest relative abundances. Breastmilk samples had significantly higher fungal alpha-diversities than NICU surface samples and fungal community compositions (beta diversities) differed significantly between the two sample types. Mycobiome compositions were predominantly driven by the relative abundances of three fungal taxa: Candida albicans, Candida parapsilosis, and Saccharomyces cerevisiae. In total, 21 individual fungal taxa showed significantly greater relative abundances in breastmilk as compared to NICU surfaces, with three being of particular interest to human health: Candida glabrata, Candida tropicalis, and Cryptococcus neoformans. Since no fungal DNA was detected when whole breastmilk was used as the DNA template, as opposed to breastmilk subjected to cell lysis during the DNA isolation procedure, our results indicate that DNA is from fungal cells and is not cell-free DNA. In summary, both NICU surfaces and human breastmilk harbor distinct fungal communities that could provide a source of fungi for the developing infant gut mycobiota. In particular, Candida and Saccharomyces species are abundant and prevalent for both of these potential sources that infants are exposed to.

摘要

新生儿重症监护病房(NICU)内的表面,特别是那些经常被医院工作人员处理的表面,为住院婴儿提供了定植于肠道的细菌来源,除了那些在围产期从母亲来源(如母乳)获得的细菌。与细菌相比,人们对 NICU 环境中定植真菌的潜在来源知之甚少。因此,本研究的目的是描述住院于大型大学 NICU 的新生儿的潜在定植源的真菌群落(真菌组)。我们假设单位表面的真菌组与人类相关(母乳)来源的真菌组不同。我们通过对真菌 rDNA 基因座的内部转录间隔区 2(ITS2)进行测序,对多个个体患者护理区域的 NICU 表面以及母乳样本的真菌组进行了特征描述。我们发现,在所有样本中,念珠菌属和酿酒酵母属是最常见的分类群,且相对丰度最高。母乳样本的真菌 alpha 多样性显著高于 NICU 表面样本,且两种样本类型的真菌群落组成(beta 多样性)有显著差异。真菌组的组成主要受三个真菌分类群的相对丰度驱动:白念珠菌、近平滑念珠菌和酿酒酵母。共有 21 个单独的真菌分类群在母乳中的相对丰度显著高于 NICU 表面,其中三个与人类健康特别相关:光滑念珠菌、热带念珠菌和新型隐球菌。由于与使用全母乳作为 DNA 模板相比,当使用母乳细胞裂解过程中提取的 DNA 作为 DNA 模板时,没有检测到真菌 DNA,因此我们的结果表明,DNA 来自真菌细胞,而不是无细胞 DNA。总之,NICU 表面和人类母乳都携带有独特的真菌群落,这些群落可能为婴儿肠道真菌群提供真菌来源。特别是,念珠菌属和酿酒酵母属在婴儿接触的这两种潜在来源中都是丰富和普遍存在的。

相似文献

1
Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes.
Fungal Genet Biol. 2019 Jul;128:29-35. doi: 10.1016/j.fgb.2019.03.008. Epub 2019 Mar 21.
2
Development of the Human Mycobiome over the First Month of Life and across Body Sites.
mSystems. 2018 Mar 6;3(3). doi: 10.1128/mSystems.00140-17. eCollection 2018 May-Jun.
3
The gut mycobiome of the Human Microbiome Project healthy cohort.
Microbiome. 2017 Nov 25;5(1):153. doi: 10.1186/s40168-017-0373-4.
4
Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi.
mSphere. 2018 Mar 28;3(2). doi: 10.1128/mSphere.00092-18. eCollection 2018 Mar-Apr.
5
6
Host Factors Associated with Gut Mycobiome Structure.
mSystems. 2023 Apr 27;8(2):e0098622. doi: 10.1128/msystems.00986-22. Epub 2023 Feb 14.
7
Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge.
Gastroenterology. 2020 Oct;159(4):1302-1310.e5. doi: 10.1053/j.gastro.2020.06.048. Epub 2020 Jun 26.
8
Early gut mycobiota and mother-offspring transfer.
Microbiome. 2017 Aug 24;5(1):107. doi: 10.1186/s40168-017-0319-x.
10
Yeasts species distribution in Neonatal Intensive Care Units in northeast Argentina.
Mycoses. 2004 Aug;47(7):300-3. doi: 10.1111/j.1439-0507.2004.00993.x.

引用本文的文献

1
The human milk bacteriome and mycobiome and their inter-kingdom interactions viewed across geography.
Front Nutr. 2025 Jul 7;12:1610346. doi: 10.3389/fnut.2025.1610346. eCollection 2025.
3
Impact of diet on the gut mycobiome of Hong Kong Chinese infants.
Comput Struct Biotechnol J. 2025 Feb 14;27:661-671. doi: 10.1016/j.csbj.2025.02.006. eCollection 2025.
5
The first fungi: mode of delivery determines early life fungal colonization in the intestine of preterm infants.
Microbiome Res Rep. 2022 Jan 28;1(1):7. doi: 10.20517/mrr.2021.03. eCollection 2022.
6
Human milk microbiota: what did we learn in the last 20 years?
Microbiome Res Rep. 2022 May 25;1(3):19. doi: 10.20517/mrr.2022.05. eCollection 2022.
8
A Repertoire of the Less Common Clinical Yeasts.
J Fungi (Basel). 2023 Nov 11;9(11):1099. doi: 10.3390/jof9111099.
9
Composition and dynamics of intestinal fungi during the postnatal 2 months of very low birth weight infants.
Eur J Pediatr. 2024 Jan;183(1):403-414. doi: 10.1007/s00431-023-05257-w. Epub 2023 Oct 31.
10
The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease.
Microorganisms. 2023 Mar 31;11(4):909. doi: 10.3390/microorganisms11040909.

本文引用的文献

1
Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome.
Cell Host Microbe. 2018 Jul 11;24(1):133-145.e5. doi: 10.1016/j.chom.2018.06.005.
2
SHI7 Is a Self-Learning Pipeline for Multipurpose Short-Read DNA Quality Control.
mSystems. 2018 Apr 24;3(3). doi: 10.1128/mSystems.00202-17. eCollection 2018 May-Jun.
3
Development of the Human Mycobiome over the First Month of Life and across Body Sites.
mSystems. 2018 Mar 6;3(3). doi: 10.1128/mSystems.00140-17. eCollection 2018 May-Jun.
5
Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.
Cell Host Microbe. 2017 Dec 13;22(6):809-816.e4. doi: 10.1016/j.chom.2017.10.013. Epub 2017 Nov 22.
6
High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut.
mSphere. 2017 Oct 11;2(5). doi: 10.1128/mSphere.00351-17. eCollection 2017 Sep-Oct.
7
8
The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome.
Front Microbiol. 2017 Jul 31;8:1432. doi: 10.3389/fmicb.2017.01432. eCollection 2017.
9
Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome.
JAMA Pediatr. 2017 Jul 1;171(7):647-654. doi: 10.1001/jamapediatrics.2017.0378.
10
Towards an integrated phylogenetic classification of the Tremellomycetes.
Stud Mycol. 2015 Jun;81:85-147. doi: 10.1016/j.simyco.2015.12.001. Epub 2016 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验