Suppr超能文献

用于肌腱组织工程的胰岛素固定化聚己内酯-醋酸纤维素微纳结构纤维支架

Insulin immobilized PCL-cellulose acetate micro-nanostructured fibrous scaffolds for tendon tissue engineering.

作者信息

Ramos Daisy M, Abdulmalik Sama, Arul Michael R, Rudraiah Swetha, Laurencin Cato T, Mazzocca Augustus D, Kumbar Sangamesh G

机构信息

Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.

Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut.

出版信息

Polym Adv Technol. 2019 May;30(5):1205-1215. doi: 10.1002/pat.4553. Epub 2019 Feb 4.

Abstract

Use of growth factors as biochemical molecules to elicit cellular differentiation is a common strategy in tissue engineering. However, limitations associated with growth factors, such as short half-life, high effective physiological doses, and high costs, have prompted the search for growth factor alternatives, such as growth factor mimics and other proteins. This work explores the use of insulin protein as a biochemical factor to aid in tendon healing and differentiation of cells on a biomimetic electrospun micro-nanostructured scaffold. Dose response studies were conducted using human mesenchymal stem cells (MSCs) in basal media supplemented with varied insulin concentrations. A dose of 100-ng/mL insulin showed increased expression of tendon markers. Synthetic-natural blends of various ratios of polycaprolactone (PCL) and cellulose acetate (CA) were used to fabricate micro-nanofibers to balance physicochemical properties of the scaffolds in terms of mechanical strength, hydrophilicity, and insulin delivery. A 75:25 ratio of PCL:CA was found to be optimal in promoting cellular attachment and insulin immobilization. Insulin insulin deliveryimmobilized fiber matrices also showed increased expression of tendon phenotypic markers by MSCs similar to findings with insulin supplemented media, indicating preservation of insulin bioactivity. Insulin functionalized scaffolds may have potential applications in tendon healing and regeneration.

摘要

使用生长因子作为生物化学分子来引发细胞分化是组织工程中的一种常见策略。然而,与生长因子相关的局限性,如半衰期短、有效生理剂量高和成本高,促使人们寻找生长因子的替代物,如生长因子模拟物和其他蛋白质。这项工作探索了使用胰岛素蛋白作为生物化学因子,以帮助肌腱愈合以及细胞在仿生电纺微纳结构支架上的分化。使用添加了不同胰岛素浓度的基础培养基中的人间充质干细胞(MSC)进行剂量反应研究。100 ng/mL的胰岛素剂量显示肌腱标志物的表达增加。使用不同比例的聚己内酯(PCL)和醋酸纤维素(CA)的合成-天然共混物来制造微纳米纤维,以在机械强度、亲水性和胰岛素递送方面平衡支架的物理化学性质。发现PCL:CA为75:25的比例在促进细胞附着和胰岛素固定方面是最佳的。固定有胰岛素的纤维基质也显示MSC的肌腱表型标志物表达增加,类似于补充胰岛素的培养基中的发现,表明胰岛素生物活性得以保留。胰岛素功能化支架可能在肌腱愈合和再生中具有潜在应用。

相似文献

引用本文的文献

2
Micro-Nanostructured Polymeric Scaffolds for Bone Tissue Engineering.用于骨组织工程的微纳米结构聚合物支架
Int J High Speed Electron Syst. 2024 Jun-Sep;33(2-3). doi: 10.1142/s0129156424400755.
4
Biomimetic Scaffolds for Tendon Tissue Regeneration.用于肌腱组织再生的仿生支架
Biomimetics (Basel). 2023 Jun 9;8(2):246. doi: 10.3390/biomimetics8020246.
9
Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering.用于跟腱再生工程的先进纳米纤维基支架
Front Bioeng Biotechnol. 2022 Jun 30;10:897010. doi: 10.3389/fbioe.2022.897010. eCollection 2022.

本文引用的文献

3
PCL and PCL-based materials in biomedical applications.用于生物医学应用的聚己内酯(PCL)和基于 PCL 的材料。
J Biomater Sci Polym Ed. 2018 May-Jun;29(7-9):863-893. doi: 10.1080/09205063.2017.1394711. Epub 2017 Nov 2.
8
Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy.肌腱生理、病理生理及治疗中的糖胺聚糖
Bioconjug Chem. 2015 Jul 15;26(7):1237-51. doi: 10.1021/acs.bioconjchem.5b00091. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验