Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States.
Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada.
Elife. 2019 Oct 4;8:e47918. doi: 10.7554/eLife.47918.
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
树突棘是一种特化的突触后结构,可转导突触前信号,受神经活动调节,并与学习和记忆相关。大多数关于树突棘功能的研究都集中在哺乳动物神经系统上。然而,(Philbrook 等人,2018 年)已经报道了类似树突棘的突起,这表明较小模式生物的实验优势可以被利用来研究树突棘的生物学。在这里,我们使用超分辨率显微镜、电子显微镜、活细胞成像和遗传学来表明 运动神经元具有功能性的树突棘,这些树突棘:(1) 由动态肌动蛋白细胞骨架结构定义;(2) 与突触前致密突起接触;(3) 定位于内质网和核糖体;(4) 显示由突触前活动触发并通过内部 Ca 库传播的钙瞬变;(5) 对调节树突棘密度的活性依赖性信号做出反应。这些研究为利用 遗传学和活细胞成像进行树突棘形态发生和功能的基础研究的新实验范式提供了坚实的基础。