Suppr超能文献

用于预测药物-靶标相互作用的耦合矩阵-矩阵和耦合张量-矩阵补全方法。

Coupled matrix-matrix and coupled tensor-matrix completion methods for predicting drug-target interactions.

出版信息

Brief Bioinform. 2021 Mar 22;22(2):2161-2171. doi: 10.1093/bib/bbaa025.

Abstract

Predicting the interactions between drugs and targets plays an important role in the process of new drug discovery, drug repurposing (also known as drug repositioning). There is a need to develop novel and efficient prediction approaches in order to avoid the costly and laborious process of determining drug-target interactions (DTIs) based on experiments alone. These computational prediction approaches should be capable of identifying the potential DTIs in a timely manner. Matrix factorization methods have been proven to be the most reliable group of methods. Here, we first propose a matrix factorization-based method termed 'Coupled Matrix-Matrix Completion' (CMMC). Next, in order to utilize more comprehensive information provided in different databases and incorporate multiple types of scores for drug-drug similarities and target-target relationship, we then extend CMMC to 'Coupled Tensor-Matrix Completion' (CTMC) by considering drug-drug and target-target similarity/interaction tensors. Results: Evaluation on two benchmark datasets, DrugBank and TTD, shows that CTMC outperforms the matrix-factorization-based methods: GRMF, $L_{2,1}$-GRMF, NRLMF and NRLMF$\beta $. Based on the evaluation, CMMC and CTMC outperform the above three methods in term of area under the curve, F1 score, sensitivity and specificity in a considerably shorter run time.

摘要

预测药物和靶点之间的相互作用在新药发现、药物再利用(也称为药物重定位)过程中起着重要作用。需要开发新的、有效的预测方法,以避免仅基于实验来确定药物-靶点相互作用(DTIs)的昂贵和繁琐过程。这些计算预测方法应该能够及时识别潜在的 DTIs。矩阵分解方法已被证明是最可靠的方法组。在这里,我们首先提出了一种基于矩阵分解的方法,称为“耦合矩阵-矩阵补全”(CMMC)。接下来,为了利用不同数据库中提供的更全面的信息,并结合药物-药物相似性和靶点-靶点关系的多种类型分数,我们通过考虑药物-药物和靶点-靶点相似性/相互作用张量,将 CMMC 扩展到“耦合张量-矩阵补全”(CTMC)。结果:在两个基准数据集 DrugBank 和 TTD 上的评估表明,CTMC 优于基于矩阵分解的方法:GRMF、$L_{2,1}$-GRMF、NRLMF 和 NRLMF$\beta$。基于评估,CMMC 和 CTMC 在曲线下面积、F1 得分、敏感性和特异性方面表现优于上述三种方法,且运行时间明显更短。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a8/7986629/45229fefd50d/bbaa025f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验