Department of Neuroscience, Physiology & Pharmacology, UCL, London, United Kingdom.
Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
Elife. 2020 Mar 27;9:e54937. doi: 10.7554/eLife.54937.
Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.
具有多样化光谱调谐、离子选择性和动力学的光遗传学驱动器不断被设计出来,为以亚细胞分辨率和毫秒精度控制神经活动提供了强大的工具。实现可靠和可解释的体内光遗传学操作需要可重复的驱动器表达和目标神经元中光电流的校准。在这里,我们开发了九条用于稳定视蛋白表达的转基因斑马鱼系,并对其体内功效进行了校准。我们首先使用高通量行为测定来比较视蛋白诱导或沉默神经活动的能力。接下来,我们进行了体内全细胞电生理记录,以量化光电流的幅度和动力学,并测试视蛋白精确控制尖峰的能力。我们观察到功效的显著变化,这与视蛋白表达水平和光电流特性的差异有关,并确定了最有效视蛋白的最佳使用条件。总的来说,我们校准的光遗传学工具包将有助于设计受控的光遗传学电路操作。