Saylan Yeşeren, Erdem Özgecan, Inci Fatih, Denizli Adil
Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey.
Department of Biology, Hacettepe University, 06800 Ankara, Turkey.
Biomimetics (Basel). 2020 May 12;5(2):20. doi: 10.3390/biomimetics5020020.
Understanding the fundamentals of natural design, structure, and function has pushed the limits of current knowledge and has enabled us to transfer knowledge from the bench to the market as a product. In particular, biomimicry-one of the crucial strategies in this respect-has allowed researchers to tackle major challenges in the disciplines of engineering, biology, physics, materials science, and medicine. It has an enormous impact on these fields with pivotal applications, which are not limited to the applications of biocompatible tooth implants, programmable drug delivery systems, biocompatible tissue scaffolds, organ-on-a-chip systems, wearable platforms, molecularly imprinted polymers (MIPs), and smart biosensors. Among them, MIPs provide a versatile strategy to imitate the procedure of molecular recognition precisely, creating structural fingerprint replicas of molecules for biorecognition studies. Owing to their affordability, easy-to-fabricate/use features, stability, specificity, and multiplexing capabilities, host-guest recognition systems have largely benefitted from the MIP strategy. This review article is structured with four major points: (i) determining the requirement of biomimetic systems and denoting multiple examples in this manner; (ii) introducing the molecular imprinting method and reviewing recent literature to elaborate the power and impact of MIPs on a variety of scientific and industrial fields; (iii) exemplifying the MIP-integrated systems, i.e., chromatographic systems, lab-on-a-chip systems, and sensor systems; and (iv) closing remarks.
理解自然设计、结构和功能的基本原理,拓展了当前知识的边界,并使我们能够将知识从实验室转化为市场上的产品。特别是,仿生学——这方面的关键策略之一——使研究人员能够应对工程、生物学、物理学、材料科学和医学等学科中的重大挑战。它通过关键应用对这些领域产生了巨大影响,这些应用不仅限于生物相容性牙齿植入物、可编程药物递送系统、生物相容性组织支架、芯片器官系统、可穿戴平台、分子印迹聚合物(MIP)和智能生物传感器的应用。其中,MIP提供了一种通用策略,可精确模仿分子识别过程,创建用于生物识别研究的分子结构指纹复制品。由于其价格低廉、易于制造/使用、稳定性、特异性和多重检测能力,主客体识别系统在很大程度上受益于MIP策略。这篇综述文章的结构包含四个要点:(i)确定仿生系统的要求并以此方式列举多个示例;(ii)介绍分子印迹方法并回顾近期文献,以阐述MIP在各种科学和工业领域的作用和影响;(iii)举例说明集成MIP的系统,即色谱系统、芯片实验室系统和传感器系统;以及(iv)结束语。