Suppr超能文献

设计用于肺炎疾病分类的集成深度学习模型。

Design ensemble deep learning model for pneumonia disease classification.

作者信息

El Asnaoui Khalid

机构信息

National School of Applied Sciences (ENSA), Department of Computer Sciences, Mohammed First University, BP: 669, 60000 Oujda, Morocco.

出版信息

Int J Multimed Inf Retr. 2021;10(1):55-68. doi: 10.1007/s13735-021-00204-7. Epub 2021 Feb 20.

Abstract

With the recent spread of the SARS-CoV-2 virus, computer-aided diagnosis (CAD) has received more attention. The most important CAD application is to detect and classify pneumonia diseases using X-ray images, especially, in a critical period as pandemic of covid-19 that is kind of pneumonia. In this work, we aim to evaluate the performance of single and ensemble learning models for the pneumonia disease classification. The ensembles used are mainly based on fined-tuned versions of (InceptionResNet_V2, ResNet50 and MobileNet_V2). We collected a new dataset containing 6087 chest X-ray images in which we conduct comprehensive experiments. As a result, for a single model, we found out that InceptionResNet_V2 gives 93.52% of F1 score. In addition, ensemble of 3 models (ResNet50 with MobileNet_V2 with InceptionResNet_V2) shows more accurate than other ensembles constructed (94.84% of F1 score).

摘要

随着新型冠状病毒SARS-CoV-2的近期传播,计算机辅助诊断(CAD)受到了更多关注。最重要的CAD应用是使用X射线图像检测和分类肺炎疾病,特别是在作为肺炎一种的新冠疫情大流行的关键时期。在这项工作中,我们旨在评估单模型和集成学习模型在肺炎疾病分类方面的性能。所使用的集成模型主要基于(InceptionResNet_V2、ResNet50和MobileNet_V2)的微调版本。我们收集了一个包含6087张胸部X射线图像的新数据集,并在其中进行了全面的实验。结果,对于单个模型,我们发现InceptionResNet_V2的F1分数为93.52%。此外,由3个模型(ResNet50、MobileNet_V2和InceptionResNet_V2)组成的集成模型比其他构建的集成模型表现得更准确(F1分数为94.84%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a1c/7896551/13cfb3c610fb/13735_2021_204_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验