Suppr超能文献

社交距离信念与人类流动性:来自 Twitter 的证据。

Social distancing beliefs and human mobility: Evidence from Twitter.

机构信息

IAE Paris - Université Paris 1 Panthéon-Sorbonne, Paris, France.

CES Sorbonne - Université Paris 1 Panthéon-Sorbonne, Paris, France.

出版信息

PLoS One. 2021 Mar 3;16(3):e0246949. doi: 10.1371/journal.pone.0246949. eCollection 2021.

Abstract

We construct a novel database containing hundreds of thousands geotagged messages related to the COVID-19 pandemic sent on Twitter. We create a daily index of social distancing-at the state level-to capture social distancing beliefs by analyzing the number of tweets containing keywords such as "stay home", "stay safe", "wear mask", "wash hands" and "social distancing". We find that an increase in the Twitter index of social distancing on day t-1 is associated with a decrease in mobility on day t. We also find that state orders, an increase in the number of COVID-19 cases, precipitation and temperature contribute to reducing human mobility. Republican states are also less likely to enforce social distancing. Beliefs shared on social networks could both reveal the behavior of individuals and influence the behavior of others. Our findings suggest that policy makers can use geotagged Twitter data-in conjunction with mobility data-to better understand individual voluntary social distancing actions.

摘要

我们构建了一个包含数十万条与 COVID-19 大流行相关的地理标记消息的新型数据库,这些消息是在 Twitter 上发布的。我们通过分析包含“stay home”、“stay safe”、“wear mask”、“wash hands”和“social distancing”等关键词的推文数量,创建了一个每日社交隔离指数,以捕捉社交隔离信念。我们发现,t-1 日 Twitter 社交隔离指数的增加与 t 日流动性的下降有关。我们还发现,州政府命令、COVID-19 病例数的增加、降水和温度有助于减少人类流动性。共和党州也不太可能执行社交隔离措施。社交网络上分享的信念既可以揭示个人的行为,也可以影响他人的行为。我们的研究结果表明,政策制定者可以使用地理标记的 Twitter 数据——结合流动性数据——来更好地了解个人自愿的社交隔离行为。

相似文献

1

引用本文的文献

本文引用的文献

2
3
Civic capital and social distancing during the Covid-19 pandemic.新冠疫情期间的公民资本与社会距离
J Public Econ. 2021 Jan;193:104310. doi: 10.1016/j.jpubeco.2020.104310. Epub 2020 Nov 11.
5
Economic uncertainty before and during the COVID-19 pandemic.新冠疫情之前及期间的经济不确定性。
J Public Econ. 2020 Nov;191:104274. doi: 10.1016/j.jpubeco.2020.104274. Epub 2020 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验