Suppr超能文献

用于损伤特异性骨再生的3D生物打印抑菌超弹性骨支架

3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration.

作者信息

Shokouhimehr Mohammadreza, Theus Andrea S, Kamalakar Archana, Ning Liqun, Cao Cong, Tomov Martin L, Kaiser Jarred M, Goudy Steven, Willett Nick J, Jang Ho Won, LaRock Christopher N, Hanna Philip, Lechtig Aron, Yousef Mohamed, Martins Janaina Da Silva, Nazarian Ara, Harris Mitchel B, Mahmoudi Morteza, Serpooshan Vahid

机构信息

Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.

Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA.

出版信息

Polymers (Basel). 2021 Mar 30;13(7):1099. doi: 10.3390/polym13071099.

Abstract

Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.

摘要

目前用于大骨骨折再生的策略临床成功率有限,主要原因是整合和愈合不佳。需要采用多学科方法来设计和开发功能性组织工程支架,以克服这些转化挑战。在此,一种负载超顺磁性氧化铁纳米颗粒(SPIONs)的新一代超弹性骨(HB)植入物通过3D生物打印制备,并研究了其对大的不愈合骨骨折的再生效果。使用主要由羟基磷灰石组成的具有骨传导性、高弹性且对手术友好的生物墨水,将支架生物打印成与骨缺损紧密对应的几何形状。将SPIONs掺入HB生物墨水中可增强骨移植物的抑菌性能,同时不表现出细胞毒性。小鼠胚胎细胞和人成骨样细胞在打印的HB支架上进行体外培养,长达14天仍保持存活和功能。将损伤特异性生物打印构建体植入大鼠股骨缺损模型中,在2周的时间进程中显示出显著的再生效果。在未观察到感染、免疫排斥或纤维化包裹的情况下,HB移植物显示出与宿主组织的快速整合、骨化和新骨生长。这些结果表明,负载功能性纳米颗粒的3D生物打印HB支架在硬组织工程应用中具有巨大的转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f22c/8036866/b73ddf84ffcc/polymers-13-01099-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验