Suppr超能文献

胸部X线片中的新型冠状病毒肺炎:从检测、严重程度评分到患者疾病监测

COVID-19 in CXR: From Detection and Severity Scoring to Patient Disease Monitoring.

作者信息

Frid-Adar Maayan, Amer Rula, Gozes Ophir, Nassar Jannette, Greenspan Hayit

出版信息

IEEE J Biomed Health Inform. 2021 Jun;25(6):1892-1903. doi: 10.1109/JBHI.2021.3069169. Epub 2021 Jun 3.

Abstract

This work estimates the severity of pneumonia in COVID-19 patients and reports the findings of a longitudinal study of disease progression. It presents a deep learning model for simultaneous detection and localization of pneumonia in chest Xray (CXR) images, which is shown to generalize to COVID-19 pneumonia. The localization maps are utilized to calculate a "Pneumonia Ratio" which indicates disease severity. The assessment of disease severity serves to build a temporal disease extent profile for hospitalized patients. To validate the model's applicability to the patient monitoring task, we developed a validation strategy which involves a synthesis of Digital Reconstructed Radiographs (DRRs - synthetic Xray) from serial CT scans; we then compared the disease progression profiles that were generated from the DRRs to those that were generated from CT volumes.

摘要

这项工作评估了新冠肺炎患者肺炎的严重程度,并报告了一项关于疾病进展的纵向研究结果。它提出了一种深度学习模型,用于同时检测和定位胸部X光(CXR)图像中的肺炎,该模型已被证明可推广至新冠肺炎肺炎。利用定位图来计算“肺炎比率”,该比率可表明疾病的严重程度。疾病严重程度的评估有助于为住院患者建立疾病随时间变化的范围概况。为了验证该模型在患者监测任务中的适用性,我们制定了一种验证策略,该策略涉及从系列CT扫描中合成数字重建放射影像(DRRs——合成X光);然后,我们将从DRRs生成的疾病进展概况与从CT容积生成的疾病进展概况进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0449/8545163/3c8ccf3c7848/frida1-3069169.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验