Suppr超能文献

细菌鞭毛马达的机械敏感性重塑与旋转方向无关。

Mechanosensitive remodeling of the bacterial flagellar motor is independent of direction of rotation.

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;

Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2024608118.

Abstract

Motility is important for the survival and dispersal of many bacteria, and it often plays a role during infections. Regulation of bacterial motility by chemical stimuli is well studied, but recent work has added a new dimension to the problem of motility control. The bidirectional flagellar motor of the bacterium recruits or releases torque-generating units (stator units) in response to changes in load. Here, we show that this mechanosensitive remodeling of the flagellar motor is independent of direction of rotation. Remodeling rate constants in clockwise rotating motors and in counterclockwise rotating motors, measured previously, fall on the same curve if plotted against torque. Increased torque decreases the off rate of stator units from the motor, thereby increasing the number of active stator units at steady state. A simple mathematical model based on observed dynamics provides quantitative insight into the underlying molecular interactions. The torque-dependent remodeling mechanism represents a robust strategy to quickly regulate output (torque) in response to changes in demand (load).

摘要

运动性对于许多细菌的生存和扩散很重要,而且它通常在感染过程中发挥作用。化学刺激物对细菌运动性的调节已得到充分研究,但最近的研究工作为运动性控制问题增添了新的维度。细菌的双向鞭毛马达会根据负载的变化招募或释放产生扭矩的单元(定子单元)。在这里,我们表明,这种鞭毛马达的机械敏感性重塑与旋转方向无关。如果根据扭矩绘制先前测量的顺时针旋转马达和逆时针旋转马达的重塑率常数,则它们落在同一条曲线上。增加的扭矩会降低定子单元从马达中脱离的速度,从而在稳定状态下增加了活跃的定子单元的数量。基于观察到的动力学的简单数学模型提供了对基础分子相互作用的定量见解。这种依赖于扭矩的重塑机制代表了一种快速响应需求(负载)变化而调节输出(扭矩)的稳健策略。

相似文献

3
Structural basis of bacterial flagellar motor rotation and switching.细菌鞭毛马达旋转和切换的结构基础。
Trends Microbiol. 2021 Nov;29(11):1024-1033. doi: 10.1016/j.tim.2021.03.009. Epub 2021 Apr 14.
4
Torque-dependent remodeling of the bacterial flagellar motor.依赖于扭矩的细菌鞭毛马达重塑。
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11764-11769. doi: 10.1073/pnas.1904577116. Epub 2019 May 29.
5
Load-dependent adaptation near zero load in the bacterial flagellar motor.细菌鞭毛马达在近零负载下的负载相关适应性。
J R Soc Interface. 2019 Oct 31;16(159):20190300. doi: 10.1098/rsif.2019.0300. Epub 2019 Oct 2.
6
Dynamics of mechanosensing in the bacterial flagellar motor.细菌鞭毛马达的机械感应动力学。
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11839-44. doi: 10.1073/pnas.1305885110. Epub 2013 Jul 1.

引用本文的文献

本文引用的文献

2
Structure and Function of Stator Units of the Bacterial Flagellar Motor.细菌鞭毛马达定子单元的结构与功能。
Cell. 2020 Oct 1;183(1):244-257.e16. doi: 10.1016/j.cell.2020.08.016. Epub 2020 Sep 14.
3
Structures of the stator complex that drives rotation of the bacterial flagellum.驱动细菌鞭毛旋转的定子复合物的结构。
Nat Microbiol. 2020 Dec;5(12):1553-1564. doi: 10.1038/s41564-020-0788-8. Epub 2020 Sep 14.
4
Surface Sensing and Adaptation in Bacteria.细菌中的表面感知与适应
Annu Rev Microbiol. 2020 Sep 8;74:735-760. doi: 10.1146/annurev-micro-012120-063427.
5
Molecular mechanism for rotational switching of the bacterial flagellar motor.细菌鞭毛马达旋转切换的分子机制。
Nat Struct Mol Biol. 2020 Nov;27(11):1041-1047. doi: 10.1038/s41594-020-0497-2. Epub 2020 Sep 7.
7
Assembly and Dynamics of the Bacterial Flagellum.细菌鞭毛的组装和动力学。
Annu Rev Microbiol. 2020 Sep 8;74:181-200. doi: 10.1146/annurev-micro-090816-093411. Epub 2020 Jun 30.
8
Taming the flagellar motor of pseudomonads with a nucleotide messenger.用核苷酸信使驯服假单胞菌的鞭毛马达。
Environ Microbiol. 2020 Jul;22(7):2496-2513. doi: 10.1111/1462-2920.15036. Epub 2020 May 5.
10
Mechanomicrobiology: how bacteria sense and respond to forces.力学生物学:细菌如何感知和响应力。
Nat Rev Microbiol. 2020 Apr;18(4):227-240. doi: 10.1038/s41579-019-0314-2. Epub 2020 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验