Suppr超能文献

分子印迹聚合物——走向电化学生物传感器和电子舌。

Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues.

机构信息

Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.

出版信息

Anal Bioanal Chem. 2021 Oct;413(24):6117-6140. doi: 10.1007/s00216-021-03313-8. Epub 2021 Apr 30.

Abstract

Molecularly imprinted polymers (MIPs) are artificially synthesized materials to mimic the molecular recognition process of biological macromolecules such as substrate-enzyme or antigen-antibody. The combination of these biomimetic materials with electrochemical techniques has allowed the development of advanced sensing devices, which significantly improve the performance of bare or catalyst-modified sensors, being able to unleash new applications. However, despite the high selectivity that MIPs exhibit, those can still show some cross-response towards other compounds, especially with chemically analogous (bio)molecules. Thus, the combination of MIPs with chemometric methods opens the room for the development of what could be considered a new type of electronic tongues, i.e. sensor array systems,  based on its usage. In this direction, this review provides an overview of the more common synthetic approaches, as well as the strategies that can be used to achieve the integration of MIPs and electrochemical sensors, followed by some recent examples over different areas in order to illustrate the potential of such combination in very diverse applications.

摘要

分子印迹聚合物(MIPs)是人工合成的材料,用于模拟生物大分子(如底物-酶或抗原-抗体)的分子识别过程。将这些仿生材料与电化学技术相结合,开发出了先进的传感设备,显著提高了裸传感器或催化剂修饰传感器的性能,能够释放新的应用。然而,尽管 MIPs 表现出了高选择性,但它们仍然可能对其他化合物表现出一些交叉响应,特别是对化学类似的(生物)分子。因此,MIPs 与化学计量学方法的结合为开发新型电子舌(即基于其用途的传感器阵列系统)提供了空间。在这一方向上,本综述概述了更常见的合成方法,以及可以用来实现 MIPs 和电化学传感器集成的策略,随后介绍了不同领域的一些最新实例,以说明这种组合在非常多样化的应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f2a/8084593/f3b63772b4d9/216_2021_3313_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验