Suppr超能文献

纯素饮食模式分析揭示了纯素饮食中健康和不健康的模式。

Pattern analysis of vegan eating reveals healthy and unhealthy patterns within the vegan diet.

作者信息

Gallagher Catherine T, Hanley Paul, Lane Katie E

机构信息

Research Institute for Sport and Exercise Sciences, I. M. Marsh Campus, Liverpool John Moores University, Barkhill Road, Aigburth, LiverpoolL17 6BD, UK.

出版信息

Public Health Nutr. 2021 May 11;25(5):1-11. doi: 10.1017/S136898002100197X.

Abstract

OBJECTIVE

This study aimed to identify the types of foods that constitute a vegan diet and establish patterns within the diet. Dietary pattern analysis, a key instrument for exploring the correlation between health and disease, was used to identify patterns within the vegan diet.

DESIGN

A modified version of the EPIC-Norfolk FFQ was created and validated to include vegan foods and launched on social media.

SETTING

UK participants, recruited online.

PARTICIPANTS

A convenience sample of 129 vegans voluntarily completed the FFQ. Collected data were converted to reflect weekly consumption to enable factor and cluster analyses.

RESULTS

Factor analysis identified four distinct dietary patterns including: (1) convenience (22 %); (2) health conscious (12 %); (3) unhealthy (9 %) and (4) traditional vegan (7 %). Whilst two healthy patterns were defined, the convenience pattern was the most identifiable pattern with a prominence of vegan convenience meals and snacks, vegan sweets and desserts, sauces, condiments and fats. Cluster analysis identified three clusters, cluster 1 'convenience' (26·8 %), cluster 2 'traditional' (22 %) and cluster 3 'health conscious' (51·2 %). Clusters 1 and 2 consisted of an array of ultraprocessed vegan food items. Together, both clusters represent almost half of the participants and yielding similar results to the predominant dietary pattern, strengthens the factor analysis.

CONCLUSIONS

These novel results highlight the need for further dietary pattern studies with full nutrition and blood metabolite analysis in larger samples of vegans to enhance and ratify these results.

摘要

目的

本研究旨在确定构成纯素饮食的食物类型,并建立该饮食中的模式。饮食模式分析是探索健康与疾病之间相关性的关键工具,用于识别纯素饮食中的模式。

设计

创建并验证了EPIC-诺福克食物频率问卷(FFQ)的修改版,以纳入纯素食品,并在社交媒体上发布。

背景

在线招募英国参与者。

参与者

129名纯素食者的便利样本自愿完成了FFQ。收集的数据被转换以反映每周的摄入量,以便进行因子分析和聚类分析。

结果

因子分析确定了四种不同的饮食模式,包括:(1)方便型(22%);(2)注重健康型(12%);(3)不健康型(9%)和(4)传统纯素型(7%)。虽然定义了两种健康模式,但方便型模式是最容易识别的模式,突出特点是纯素方便食品和零食、纯素糖果和甜点、酱汁、调味品和脂肪。聚类分析确定了三个聚类,聚类1“方便型”(26.8%),聚类2“传统型”(22%)和聚类3“注重健康型”(51.2%)。聚类1和聚类2由一系列超加工纯素食品组成。这两个聚类加起来代表了近一半的参与者,并且产生了与主要饮食模式相似的结果,从而加强了因子分析。

结论

这些新结果凸显了有必要在更大规模的纯素食者样本中进行进一步的饮食模式研究,并进行全面的营养和血液代谢物分析,以加强和验证这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef2/9991567/4c96f3d64ca8/S136898002100197X_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验