Suppr超能文献

一种用于病毒动力学的混合偏微分方程-基于主体的模型及其在SARS-CoV-2和流感中的应用。

A hybrid PDE-ABM model for viral dynamics with application to SARS-CoV-2 and influenza.

作者信息

Marzban Sadegh, Han Renji, Juhász Nóra, Röst Gergely

机构信息

Bolyai Institute, University of Szeged, Szeged 6720, Hungary.

出版信息

R Soc Open Sci. 2021 Nov 3;8(11):210787. doi: 10.1098/rsos.210787. eCollection 2021 Nov.

Abstract

We propose a hybrid partial differential equation-agent-based (PDE-ABM) model to describe the spatio-temporal viral dynamics in a cell population. The virus concentration is considered as a continuous variable and virus movement is modelled by diffusion, while changes in the states of cells (i.e. healthy, infected, dead) are represented by a stochastic ABM. The two subsystems are intertwined: the probability of an agent getting infected in the ABM depends on the local viral concentration, and the source term of viral production in the PDE is determined by the cells that are infected. We develop a computational tool that allows us to study the hybrid system and the generated spatial patterns in detail. We systematically compare the outputs with a classical ODE system of viral dynamics, and find that the ODE model is a good approximation only if the diffusion coefficient is large. We demonstrate that the model is able to predict SARS-CoV-2 infection dynamics, and replicate the output of experiments. Applying the model to influenza as well, we can gain insight into why the outcomes of these two infections are different.

摘要

我们提出了一种基于混合偏微分方程-主体的模型(PDE-ABM)来描述细胞群体中的时空病毒动态。病毒浓度被视为连续变量,病毒运动通过扩散进行建模,而细胞状态(即健康、感染、死亡)的变化则由随机主体模型(ABM)表示。这两个子系统相互交织:ABM中主体被感染的概率取决于局部病毒浓度,PDE中病毒产生的源项由被感染的细胞决定。我们开发了一种计算工具,使我们能够详细研究混合系统及其产生的空间模式。我们系统地将输出结果与病毒动态的经典常微分方程(ODE)系统进行比较,发现只有当扩散系数很大时,ODE模型才是一个很好的近似。我们证明该模型能够预测SARS-CoV-2感染动态,并复制实验结果。将该模型应用于流感,我们可以深入了解这两种感染结果不同的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa3/8564626/d0180e97b977/rsos210787f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验