Suppr超能文献

流行病学建模中的全局敏感性分析。

Global sensitivity analysis in epidemiological modeling.

作者信息

Lu Xuefei, Borgonovo Emanuele

机构信息

SKEMA Business School, Université Côte d'Azur, 5 Quai Marcel Dassault, Paris 92150, France.

Department of Decision Sciences, Bocconi University, Via Röntgen 1, Milan 20136, Italy.

出版信息

Eur J Oper Res. 2023 Jan 1;304(1):9-24. doi: 10.1016/j.ejor.2021.11.018. Epub 2021 Nov 16.

Abstract

Operations researchers worldwide rely extensively on quantitative simulations to model alternative aspects of the COVID-19 pandemic. Proper uncertainty quantification and sensitivity analysis are fundamental to enrich the modeling process and communicate correctly informed insights to decision-makers. We develop a methodology to obtain insights on key uncertainty drivers, trend analysis and interaction quantification through an innovative combination of probabilistic sensitivity techniques and machine learning tools. We illustrate the approach by applying it to a representative of the family of susceptible-infectious-recovered (SIR) models recently used in the context of the COVID-19 pandemic. We focus on data of the early pandemic progression in Italy and the United States (the U.S.). We perform the analysis for both cases of correlated and uncorrelated inputs. Results show that quarantine rate and intervention time are the key uncertainty drivers, have opposite effects on the number of total infected individuals and are involved in the most relevant interactions.

摘要

全球运筹学研究人员广泛依赖定量模拟来对新冠疫情的不同方面进行建模。恰当的不确定性量化和敏感性分析对于丰富建模过程并向决策者传达正确的洞察至关重要。我们开发了一种方法,通过概率敏感性技术和机器学习工具的创新组合,来获得关于关键不确定性驱动因素、趋势分析和相互作用量化的见解。我们通过将其应用于新冠疫情背景下最近使用的易感-感染-康复(SIR)模型家族中的一个代表性模型来说明该方法。我们关注意大利和美国(美国)疫情早期进展的数据。我们对相关输入和不相关输入两种情况都进行了分析。结果表明,检疫率和干预时间是关键的不确定性驱动因素,对总感染个体数量有相反的影响,并且参与了最相关的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed7/8592916/7b6c5f12398b/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验