Keyl Philipp, Bockmayr Michael, Heim Daniel, Dernbach Gabriel, Montavon Grégoire, Müller Klaus-Robert, Klauschen Frederick
Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
NPJ Precis Oncol. 2022 Jun 7;6(1):35. doi: 10.1038/s41698-022-00278-4.
Understanding the pathological properties of dysregulated protein networks in individual patients' tumors is the basis for precision therapy. Functional experiments are commonly used, but cover only parts of the oncogenic signaling networks, whereas methods that reconstruct networks from omics data usually only predict average network features across tumors. Here, we show that the explainable AI method layer-wise relevance propagation (LRP) can infer protein interaction networks for individual patients from proteomic profiling data. LRP reconstructs average and individual interaction networks with an AUC of 0.99 and 0.93, respectively, and outperforms state-of-the-art network prediction methods for individual tumors. Using data from The Cancer Proteome Atlas, we identify known and potentially novel oncogenic network features, among which some are cancer-type specific and show only minor variation among patients, while others are present across certain tumor types but differ among individual patients. Our approach may therefore support predictive diagnostics in precision oncology by inferring "patient-level" oncogenic mechanisms.
了解个体患者肿瘤中失调蛋白质网络的病理特性是精准治疗的基础。功能实验虽常用,但仅涵盖部分致癌信号网络,而从组学数据重建网络的方法通常仅预测肿瘤间的平均网络特征。在此,我们表明可解释人工智能方法逐层相关性传播(LRP)能够从蛋白质组分析数据推断个体患者的蛋白质相互作用网络。LRP分别以0.99和0.93的曲线下面积(AUC)重建平均和个体相互作用网络,并且在个体肿瘤的网络预测方面优于现有最先进的方法。利用来自癌症蛋白质组图谱的数据,我们识别出已知的和潜在的新型致癌网络特征,其中一些是癌症类型特异性的,在患者间仅表现出微小差异,而另一些则存在于特定肿瘤类型中,但在个体患者间有所不同。因此,我们的方法可通过推断“患者水平”的致癌机制来支持精准肿瘤学中的预测性诊断。