Suppr超能文献

网络隔离与错误信息的传播。

Network segregation and the propagation of misinformation.

机构信息

Faculty of Behavioural and Social Sciences, University of Groningen, Groningen , The Netherlands.

Institute of Sociology, Leipzig University, Leipzig, Germany.

出版信息

Sci Rep. 2023 Jan 17;13(1):917. doi: 10.1038/s41598-022-26913-5.

Abstract

How does the ideological segregation of online networks impact the spread of misinformation? Past studies have found that homophily generally increases diffusion, suggesting that partisan news, whether true or false, will spread farther in ideologically segregated networks. We argue that network segregation disproportionately aids messages that are otherwise too implausible to diffuse, thus favoring false over true news. To test this argument, we seeded true and false informational messages in experimental networks in which subjects were either ideologically integrated or segregated, yielding 512 controlled propagation histories in 16 independent information systems. Experimental results reveal that the fraction of false information circulating was systematically greater in ideologically segregated networks. Agent-based models show robustness of this finding across different network topologies and sizes. We conclude that partisan sorting undermines the veracity of information circulating on the Internet by increasing exposure to content that would otherwise not manage to diffuse.

摘要

在线网络的意识形态隔离如何影响错误信息的传播?过去的研究发现,同质性通常会增加扩散,这表明党派新闻,无论是真实的还是虚假的,在意识形态隔离的网络中传播得更远。我们认为,网络隔离不成比例地有利于那些原本不太可信的信息传播,从而偏爱虚假新闻而不是真实新闻。为了验证这一论点,我们在实验网络中为真实和虚假的信息消息播种,这些网络中的主体在意识形态上是整合的还是隔离的,在 16 个独立的信息系统中产生了 512 个受控传播历史。实验结果表明,在意识形态隔离的网络中,循环的虚假信息的比例系统地更大。基于代理的模型表明,在不同的网络拓扑结构和大小下,这一发现具有稳健性。我们得出的结论是,党派分类通过增加对那些原本无法传播的内容的接触,破坏了互联网上传播的信息的真实性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0902/9845210/3aaa5088e5d5/41598_2022_26913_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验