Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Department of Information Systems, College of Computing and Information System, Umm Al-Qura University, Makkah 24211, Saudi Arabia.
Int J Environ Res Public Health. 2023 Feb 2;20(3):2696. doi: 10.3390/ijerph20032696.
Big Data analytics is a technique for researching huge and varied datasets and it is designed to uncover hidden patterns, trends, and correlations, and therefore, it can be applied for making superior decisions in healthcare. Drug-drug interactions (DDIs) are a main concern in drug discovery. The main role of precise forecasting of DDIs is to increase safety potential, particularly, in drug research when multiple drugs are co-prescribed. Prevailing conventional method machine learning (ML) approaches mainly depend on handcraft features and lack generalization. Today, deep learning (DL) techniques that automatically study drug features from drug-related networks or molecular graphs have enhanced the capability of computing approaches for forecasting unknown DDIs. Therefore, in this study, we develop a sparrow search optimization with deep learning-based DDI prediction (SSODL-DDIP) technique for healthcare decision making in big data environments. The presented SSODL-DDIP technique identifies the relationship and properties of the drugs from various sources to make predictions. In addition, a multilabel long short-term memory with an autoencoder (MLSTM-AE) model is employed for the DDI prediction process. Moreover, a lexicon-based approach is involved in determining the severity of interactions among the DDIs. To improve the prediction outcomes of the MLSTM-AE model, the SSO algorithm is adopted in this work. To assure better performance of the SSODL-DDIP technique, a wide range of simulations are performed. The experimental results show the promising performance of the SSODL-DDIP technique over recent state-of-the-art algorithms.
大数据分析是一种研究庞大而多样的数据集的技术,旨在揭示隐藏的模式、趋势和相关性,因此可以应用于医疗保健领域做出更优决策。药物-药物相互作用(DDI)是药物发现中的一个主要关注点。准确预测 DDI 的主要作用是提高安全性潜力,特别是在多药物联合处方的药物研究中。目前,基于机器学习(ML)的传统方法主要依赖于手工特征,缺乏泛化能力。如今,深度学习(DL)技术可以自动从与药物相关的网络或分子图中学习药物特征,从而提高计算方法预测未知 DDI 的能力。因此,在这项研究中,我们开发了一种基于麻雀搜索优化和深度学习的 DDI 预测(SSODL-DDIP)技术,用于大数据环境中的医疗保健决策。所提出的 SSODL-DDIP 技术从各种来源识别药物的关系和属性,以进行预测。此外,还采用了具有自动编码器的多标签长短时记忆模型(MLSTM-AE)进行 DDI 预测过程。此外,基于词汇的方法用于确定 DDI 之间相互作用的严重程度。为了提高 MLSTM-AE 模型的预测结果,本工作采用了 SSO 算法。为了确保 SSODL-DDIP 技术的更好性能,进行了广泛的模拟。实验结果表明,SSODL-DDIP 技术在最近的最先进算法中表现出了有前途的性能。