Diaz-Ledezma Claudio, Mardones Rodrigo
Hospital El Carmen, Santiago, Chile.
Clínica Las Condes, Santiago, Chile.
HSS J. 2023 May;19(2):205-209. doi: 10.1177/15563316221120582. Epub 2022 Sep 1.
Prolonged length of stay (LOS) after a hip fracture is associated with increased mortality. We sought to create a model to predict prolonged LOS in elderly Chilean patients with hip fractures managed during the COVID-19 pandemic. Employing an official database, we created an artificial neural network (ANN), a computational model corresponding to a subset of machine learning, to predict prolonged LOS (≥14 days) among 2686 hip fracture patients managed in 43 Chilean public hospitals during 2020. We identified 18 clinically relevant variables as potential predictors; 80% of the sample was used to train the ANN and 20% was used to test it. The performance of the ANN was evaluated via measuring its discrimination power through the area under the curve of the receiver operating characteristic curve (AUC-ROC). Of the 2686 patients, 820 (30.2%) had prolonged LOS. In the training sample (2,125 cases), the ANN correctly classified 1,532 cases (72.09%; AUC-ROC: 0.745). In the test sample (561 cases), the ANN correctly classified 401 cases (71.48%; AUC-ROC: 0.742). The most relevant variables to predict prolonged LOS were the patient's admitting hospital (relative importance [RI]: 0.11), the patient's geographical health service providing health care (RI: 0.11), and the patient's surgery being conducted within 2 days of admission (RI: 0.10). Using national-level big data, we developed an ANN that predicted with fair accuracy prolonged LOS in elderly Chilean patients with hip fractures during the COVID-19 pandemic. The main predictors of a prolonged LOS were unrelated to the patient's individual health and concerned administrative and organizational factors.
髋部骨折后住院时间延长(LOS)与死亡率增加相关。我们试图创建一个模型,以预测在新冠疫情期间接受治疗的智利老年髋部骨折患者的住院时间延长情况。利用一个官方数据库,我们创建了一个人工神经网络(ANN),这是一种属于机器学习子集的计算模型,用于预测2020年在智利43家公立医院接受治疗的2686例髋部骨折患者中住院时间延长(≥14天)的情况。我们确定了18个临床相关变量作为潜在预测因素;80%的样本用于训练人工神经网络,20%用于测试。通过测量其在接受者操作特征曲线(AUC-ROC)下的面积来评估人工神经网络的辨别能力,以此评估其性能。在2686例患者中,820例(30.2%)住院时间延长。在训练样本(2125例)中,人工神经网络正确分类了1532例(72.09%;AUC-ROC:0.745)。在测试样本(561例)中,人工神经网络正确分类了401例(71.48%;AUC-ROC:0.742)。预测住院时间延长最相关的变量是患者的收治医院(相对重要性[RI]:0.11)、提供医疗服务的患者所在地理区域卫生服务机构(RI:0.11)以及患者在入院后2天内进行手术(RI:0.10)。利用国家级大数据,我们开发了一个人工神经网络,该网络能以合理的准确性预测新冠疫情期间智利老年髋部骨折患者的住院时间延长情况。住院时间延长的主要预测因素与患者的个人健康无关,而是涉及行政和组织因素。