Suppr超能文献

基于深度学习的结直肠癌淋巴结转移术前预测

Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer with Deep Learning.

作者信息

Liu Hailing, Zhao Yu, Yang Fan, Lou Xiaoying, Wu Feng, Li Hang, Xing Xiaohan, Peng Tingying, Menze Bjoern, Huang Junzhou, Zhang Shujun, Han Anjia, Yao Jianhua, Fan Xinjuan

机构信息

Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.

AI Lab, Tencent, Shenzhen 518057China.

出版信息

BME Front. 2022 Mar 16;2022:9860179. doi: 10.34133/2022/9860179. eCollection 2022.

Abstract

. To develop an artificial intelligence method predicting lymph node metastasis (LNM) for patients with colorectal cancer (CRC). . A novel interpretable multimodal AI-based method to predict LNM for CRC patients by integrating information of pathological images and serum tumor-specific biomarkers. . Preoperative diagnosis of LNM is essential in treatment planning for CRC patients. Existing radiology imaging and genomic tests approaches are either unreliable or too costly. . A total of 1338 patients were recruited, where 1128 patients from one centre were included as the discovery cohort and 210 patients from other two centres were involved as the external validation cohort. We developed a Multimodal Multiple Instance Learning (MMIL) model to learn latent features from pathological images and then jointly integrated the clinical biomarker features for predicting LNM status. The heatmaps of the obtained MMIL model were generated for model interpretation. . The MMIL model outperformed preoperative radiology-imaging diagnosis and yielded high area under the curve (AUCs) of 0.926, 0.878, 0.809, and 0.857 for patients with stage T1, T2, T3, and T4 CRC, on the discovery cohort. On the external cohort, it obtained AUCs of 0.855, 0.832, 0.691, and 0.792, respectively (T1-T4), which indicates its prediction accuracy and potential adaptability among multiple centres. . The MMIL model showed the potential in the early diagnosis of LNM by referring to pathological images and tumor-specific biomarkers, which is easily accessed in different institutes. We revealed the histomorphologic features determining the LNM prediction indicating the model ability to learn informative latent features.

摘要

开发一种预测结直肠癌(CRC)患者淋巴结转移(LNM)的人工智能方法。

一种基于人工智能的新型可解释多模态方法,通过整合病理图像信息和血清肿瘤特异性生物标志物来预测CRC患者的LNM。

LNM的术前诊断对CRC患者的治疗规划至关重要。现有的放射影像学和基因组检测方法要么不可靠,要么成本过高。

共招募了1338例患者,其中来自一个中心的1128例患者作为发现队列,来自其他两个中心的210例患者作为外部验证队列。我们开发了一种多模态多实例学习(MMIL)模型,从病理图像中学习潜在特征,然后联合整合临床生物标志物特征以预测LNM状态。为进行模型解释,生成了所得MMIL模型的热图。

在发现队列中,MMIL模型的表现优于术前放射影像学诊断,对于T1、T2、T3和T4期CRC患者,其曲线下面积(AUC)分别为0.926、0.878、0.809和0.857。在外部队列中,其AUC分别为0.855、0.832、0.691和0.792(T1 - T4),这表明了其在多个中心的预测准确性和潜在适应性。

MMIL模型通过参考病理图像和肿瘤特异性生物标志物,在LNM的早期诊断中显示出潜力,这些在不同机构中都易于获取。我们揭示了决定LNM预测的组织形态学特征,表明该模型具有学习信息性潜在特征的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0df5/10521754/582d649460f9/9860179.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验