Suppr超能文献

通过酶法和动态核极化 NMR 揭示啤酒废酵母细胞壁中糖原的共价连接

Covalent connectivity of glycogen in brewer's spent yeast cell walls revealed by enzymatic approaches and dynamic nuclear polarization NMR.

机构信息

LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

CICECO-Aveiro Institute of Materials, Department of Chemistry University of Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Carbohydr Polym. 2024 Jan 15;324:121475. doi: 10.1016/j.carbpol.2023.121475. Epub 2023 Oct 10.

Abstract

Yeast cell walls undergo modifications during the brewing process, leading to a remodelling of their architecture. One significant change is the increased insolubility of the cell wall glycogen pool, likely due to the formation of covalent bonds between glycogen and cell wall polysaccharides. To verify this hypothesis, we extracted the brewer's spent yeast with 4 M KOH, obtaining an insoluble glucan fraction (AE.4 M) primarily composed of (α1 → 4)- and (1 → 3)-linked Glc residues. Dynamic nuclear polarization solid-state NMR of AE.4 M revealed distinct glucan resonances that helped to differentiate between α- and β glucosyl (1 → 4)-linked residues, and confirm covalent linkages between (β1 → 3)-glucans and glycogen through a (β1 → 4)-linkage. The hydrolysis with different endo-glucanases (zymolyase, cellulase, and lichenase) was used to obtain solubilized high molecular weight glycogen fractions. NMR analysis showed that covalent links between glycogen and (β1 → 6)-glucans through (α1 → 6) glycosidic linkage, with branching at the C6 position involving (β1 → 3), and (β1 → 6)-glucans. HPAEC-PAD analysis of the enzymatically released oligosaccharides confirmed covalent linkages of (β1 → 3), (β1 → 6)-, and (β1 → 4)-glucan motifs with (α1 → 4)-glucans. This combination of multiple enzymatic approaches and NMR methods shed light into the role of yeast cell wall glycogen as a structural core covalently linked to other cell wall components during the brewing process.

摘要

酵母细胞壁在酿造过程中会发生修饰,导致其结构发生重塑。一个显著的变化是细胞壁糖原池的溶解度增加,这可能是由于糖原与细胞壁多糖之间形成了共价键。为了验证这一假设,我们用 4 M KOH 提取了酿酒酵母,得到了不溶性葡聚糖部分(AE.4 M),主要由(α1→4)-和(1→3)-连接的 Glc 残基组成。AE.4 M 的动态核极化固态 NMR 显示出独特的葡聚糖共振,有助于区分α-和β葡糖基(1→4)-连接的残基,并通过(β1→4)-键确认(β1→3)-葡聚糖和糖原之间的共价键。用不同的内切葡聚糖酶(zymolyase、纤维素酶和lichenase)水解以获得可溶的高分子量糖原部分。NMR 分析表明,糖原与(β1→6)-葡聚糖通过(α1→6)糖苷键共价连接,C6 位分支涉及(β1→3)和(β1→6)-葡聚糖。酶解释放的寡糖的 HPAEC-PAD 分析证实了(β1→3)、(β1→6)-和(β1→4)-葡聚糖基元与(α1→4)-葡聚糖的共价键。这种多种酶法和 NMR 方法的结合揭示了酵母细胞壁糖原在酿造过程中作为与其他细胞壁成分共价连接的结构核心的作用。

相似文献

6
Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.巴氏酵母细胞壁多糖的酿造工艺改性。
Carbohydr Polym. 2015 Jun 25;124:322-30. doi: 10.1016/j.carbpol.2015.02.031. Epub 2015 Feb 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验