Microenvironment and Immunology Research Laboratory, Medical Center, Faculty of Medicine, Freiburg University, Freiburg, Germany.
Department of Neurosurgery, Medical Center, Faculty of Medicine, Erlangen University, Erlangen, Germany.
Nat Commun. 2024 Aug 23;15(1):7280. doi: 10.1038/s41467-024-50904-x.
Spatially resolved transcriptomics has revolutionized RNA studies by aligning RNA abundance with tissue structure, enabling direct comparisons between histology and gene expression. Traditional approaches to identifying signature genes often involve preliminary data grouping, which can overlook subtle expression patterns in complex tissues. We present Spatial Gradient Screening, an algorithm which facilitates the supervised detection of histology-associated gene expression patterns without prior data grouping. Utilizing spatial transcriptomic data along with single-cell deconvolution from injured mouse cortex, and TCR-seq data from brain tumors, we compare our methodology to standard differential gene expression analysis. Our findings illustrate both the advantages and limitations of cluster-free detection of gene expression, offering more profound insights into the spatial architecture of transcriptomes. The algorithm is embedded in SPATA2, an open-source framework written in R, which provides a comprehensive set of tools for investigating gene expression within tissue.
空间转录组学通过将 RNA 丰度与组织结构对齐,实现了 RNA 研究的革命性突破,使组织学和基因表达之间能够直接进行比较。传统的识别特征基因的方法通常涉及初步的数据分组,这可能会忽略复杂组织中微妙的表达模式。我们提出了空间梯度筛选算法(Spatial Gradient Screening),这是一种无需预先进行数据分组即可进行监督检测组织学相关基因表达模式的算法。我们利用空间转录组学数据以及受损小鼠皮层的单细胞分解,以及脑肿瘤的 TCR-seq 数据,将我们的方法与标准差异基因表达分析进行了比较。我们的研究结果说明了无聚类的基因表达检测的优势和局限性,为转录组的空间结构提供了更深入的见解。该算法被嵌入到 R 语言编写的开源框架 SPATA2 中,该框架提供了一套全面的工具,用于研究组织内的基因表达。